
A Volume in the
Embedded Technology™ Series

Embedded Controller
Hardware Design
by Ken Arnold

www.LLH-Publishing.com
www.EmbeddedControllerHardwareDesign.com

ii

Embedded Control Hardware Design © 2001 by LLH Technology Publishing.
All rights reserved. No part of this book may be reproduced, in any form or by any
means whatsoever, without permission in writing from the publisher. While every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Neither is any liability assumed
for damages resulting from the use of the information contained herein.

ISBN: 1-878707-52-3

Library of Congress Control Number: 00-135391

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Project management and developmental
editing: Harry Helms, LLH Technology Publishing

Interior design and production services: Greg Calvert, Model, CO

Cover design: Sergio Villareal, Vista, CA

www.LLH-Publishing.com
www.EmbeddedControllerHardwareDesign.com

iii

Dedication
This book is dedicated in memory of my father, Kenneth Owen Arnold,
who always encouraged me to follow my dreams. When other adults
discouraged me from entering the engineering field, he told me, “If you
really like what you’re doing and you’re good at it, you will be successful.”
Nowadays I get paid to have fun doing things I’d do for free anyway, so that
meets my definition of success! Thanks, Dad.

iv

Acknowledgment

This book is a direct result of contributions from many of the students I

have been fortunate enough to have in my embedded computer engineering

courses at the University of California—San Diego extension. They have

provided a valuable form of feedback by sharing their notes and pointing

out weaknesses in the text and in-class presentations. Some sections of

this text were also provided by David Fern and Steven Tietsworth.

I would also like to thank my family for supporting me and, Mary, Nikki,

Kenny, Daniel, Amy, and Annie for being patient and helping out when

I needed it!

1 Review of Electronics Fundamentals.............................. 1

Objectives ... 2

Embedded Microcomputer Applications.. 2

Microcomputer and Microcontroller Architectures............................... 4

Digital Hardware Concepts ... 6

Voltage, Current, and Resistance .. 7

Diodes.. 9

Transistors ... 9

Mechanical Switches ... 10

Transistor Switch ON ... 11

Transistor Switch OFF ... 12

The FET as a Logic Switch .. 12

NMOS Logic ... 13

CMOS Logic ... 14

Mixed MOS .. 16

Real Transistors Don�t Eat Q! .. 16

Logic Symbols... 17

Tri-State Logic.. 18

Timing Diagrams ... 19

Multiplexed Bus ... 20

Loading and Noise Margin Analysis .. 21

The Design and Development Process... 21

Chapter One Problems ... 22

2 Microcontroller Concepts ... 23

Organization: von Neumann vs. Harvard .. 24

Microprocessor/Microcontroller Basics ... 24

Microcontroller CPU, Memory, and I/O .. 25

Design Methodology .. 26

The 8051 Family Microcontroller Processor Architecture 27

Introduction to the 8051 Architecture ... 28

Memory Organization... 30

CPU Hardware ... 32

Oscillator and Timing Circuitry ... 41

The 8051 Microcontroller Instruction Set Summary 42

Direct and Register Addressing ... 43

Indirect Addressing .. 46

Immediate Addressing ... 50

Generic Address Modes and Instruction Formats.................................... 51

Address Modes .. 52

The Software Development Cycle ... 55

Software Development Tools ... 55

Hardware Development Tools ... 56

Chapter Two Problems ... 56

3 Worst- Case Timing, Loading, Analysis, and Design 57

Timing Diagram Notation Conventions ... 58

Rise and Fall Times ... 59

Propagation Delays.. 59

Setup and Hold Time ... 60

Tri-State Bus Interfacing .. 61

Pulse Width and Clock Frequency ... 62

Fan-Out and Loading Analysis�DC and AC ... 63

Calculating Wiring Capacitance ... 66

Fan-Out When CMOS Drives LSTTL... 68

Transmission Line Effects .. 70

Ground Bounce.. 72

Logic Family IC Characteristics and Interfacing 75

Interfacing TTL Compatible Signals to 5 Volt CMOS 78

Design Example: Noise Margin Analysis Spreadsheet............................ 82

Worst-Case Timing Analysis Example ... 90

Chapter Three Review Problems .. 92

4 Memory Technologies and Interfacing............................ 95

Memory Taxonomy ... 96

Secondary Memory.. 97

Volatility.. 98

Random Access Memory ... 98

Sequential Access Memory ... 99

Direct Access Memory ... 99

Read/Write Memories ... 100

Read-Only Memory ... 101

Other Memory Types .. 104

JEDEC Memory Pin-Outs ... 105

Device Programmers .. 106

Memory Organization Considerations... 107

Parametric Considerations .. 109

Asynchronous vs. Synchronous Memory.. 110

Error Detection and Correction ... 111

Error Sources ... 111

Confidence Checks.. 111

Memory Management ... 113

Cache Memory... 114

Virtual Memory ... 114

CPU Control Lines for Memory Interfacing .. 115

Chapter Four Problems... 115

Read and Write Operations... 117

5 CPU Bus Interface and Timing ... 117

Address, Data, and Control Buses.. 118

Address Spaces and Decoding... 120

Address Map ... 122

Chapter Five Problems ... 124

The Central Processing Unit (CPU) .. 125

6 A Detailed Design Example .. 125

External Data Memory Cycles... 134

External Memory Data Memory Read.. 134

External Data Memory Write .. 136

Design Problem 1.. 138

Design Problem 2.. 139

Design Problem 3.. 140

Completing the Analysis .. 142

Chapter Six Problems ... 143

Memory Selection and Interfacing 126

Preliminary Timing Analysis ... 127

7 Programmable Logic Devices .. 145

Introduction to Programmable Logic ... 147

Technologies: Fuse-Link, EPROM, EEPROM, and RAM Storage 147

PROM as PLD ... 150

Programmable Logic Arrays .. 151

PAL-Style PLDs ... 151

Design Examples .. 153

PLD Development Tools .. 155

Simple I/O Decoding and Interfacing Using PLDs 157

IC Design Using PCs .. 157

Chapter Seven Problems .. 159

Direct CPU I/O Interfacing... 161

8 Basic I/ O Interfaces .. 161

Port I/O for the 8051 Family .. 162

Output Current Limitations .. 166

Simple Input/Output Devices... 169

Matrix Keyboard Input .. 170

Matrix Display Devices... 171

Program-Controlled I/O Bus Interfacing .. 173

Real-Time Processing.. 175

Direct Memory Access (DMA) ... 175

Burst vs. Single Cycle DMA ... 176

Cycle Stealing .. 177

Elementary I/O Devices and Applications ... 178

Timing and Level Conversion Considerations ... 180

Level Conversion ... 180

Power Relays ... 180

Chapter Eight Problems .. 181

9 Other Interfaces and Bus Cycles 183

Interrupt Cycles ... 184

Software Interrupts .. 184

Hardware Interrupts .. 184

Interrupt Driven Program Elements ... 186

Critical Code Segments ... 187

Semaphores... 188

Interrupt Processing Options ... 189

Level and Edge Triggered Interrupts ... 190

Vectored Interrupts .. 192

Non-Vectored Interrupts... 193

Serial Interrupt Prioritization... 194

Parallel Interrupt Prioritization.. 194

Construction Methods ... 197

10 Other Useful Stuff.. 197

Electromagnetic Compatibility ... 199

Electrostatic Discharge Effects ... 199

Fault Tolerance ... 200

Hardware Development Tools... 201

Instrumentation Issues ... 202

Software Development Tools .. 203

Other Specialized Design Considerations... 203

Thermal Analysis and Design .. 204

Battery Powered System Design Considerations 205

Processor Performance Metrics.. 206

Device Selection Process ... 207

Power and Ground Planes... 198

Ground Problems ... 198

11 Other Interfaces... 209

Analog Signal Conversion... 210

Special Proprietary Synchronous Serial Interfaces 211

Unconventional Use of DRAM for Low Cost Data Storage 211

Digital Signal Processing / Digital Audio Recording 212

Detailed Checklist ... 215

A Hardware Design Checklist ... 215

Define Power Supply Requirements ... 216

Verify Voltage Level Compatibility ... 217

Check DC Fan-Out: Output Current Drive vs. Loading 218

AC (Capacitive) Output Drive vs. Capacitive Load and De- rating...... 218

Verify Worst Case Timing Conditions ... 219

Determine if Transmission Line Termination is Required 219

Clock Distribution .. 220

Power and Ground Distribution ... 220

Asynchronous Inputs... 222

Guarantee Power-On Reset State .. 222

Programmable Logic Devices ... 222

Deactivate Interrupt and Other Requests on Power-Up...................... 223

Electromagnetic Compatibility Issues ... 223

Manufacturing and Test Issues ... 223

Books .. 225

B References, Web Links, and Other Sources 225

Web and FTP Sites ... 226

Periodicals: Subscription ... 227

Periodicals: Advertiser Supported Trade Magazines 228

Programming Microcontrollers in C, Second Edition 233

Embedded Controller Hardware Design .. 233

Controlling the World with Your PC ... 233

The Forrest Mims Engineers Notebook ... 233

The Forrest Mims Circuit Scrapbook, Volumes I and II 233

The Integrated Circuit Hobbyist�s Handbook... 233

Simple, Low-Cost Electronics Projects .. 233

viii

Preface

During the early years of microprocessors, there were few engineers with
education and experience in the applications of microprocessor technology.
Now that microprocessors and microcontrollers have become pervasive in so
many devices, the ability to use them has become almost a requirement for
many technical people.

Today the microprocessor and the microcontroller have become two of the
most powerful tools available to the scientist and engineer. Microcontrollers
have been embedded in so many products that it is easy to overlook the fact
that they greatly outnumber personal computers. Millions of PCs are shipped
each year, but billions of microcontrollers ship annually. While a great deal of
attention is given to personal computers, the vast majority of new designs are
for embedded applications. For every PC designer, there are thousands of
designers using microcontrollers in embedded applications. The number of
embedded designs is growing quickly. The purpose of this book is to give the
reader the basic design and analysis skills to design reliable microcontroller or
microprocessor based systems. The emphasis in this book is on the practical
aspects of interfacing the processor to memory and I/O devices, and the basics
of interfacing such a device to the outside world.

A major goal of this book is to show how to make devices that are inherently
reliable by design. While a lot of attention has been given to “quality improve­
ment,” the majority of the emphasis has been placed on the processes that
occur after the design of a product is complete. Design deficiencies are a sig­
nificant problem, and can be exceedingly difficult to identify in the field.
These types of quality problems can be addressed in the design phase with
relatively little effort, and with far less expense than will be incurred later in
the process. Unfortunately, there are many hardware designers and organiza­
tions that, for various reasons, do not understand the significance and ex­
pense of an unreliable design. The design methodology presented in this text
is intended to address this problem.

ix Preface

Learning to design and develop a microcontroller system without any practical
hands-on experience is a bit like trying to learn to ride a bike from reading
book. Thus, another goal is to provide a practical example of a complete
working product. What appears easy on paper may prove extremely difficult
without some real world experience and some potentially painful crashes.
In order to do it right, it’s best to examine and use a real design. On the other
hand, the current state of the technology (surface mounted packaging, etc.)
can make the practical side problematic. In order to address this problem, a
special educational System Development Kit is available to accompany this
book (8031SDK). All the documentation to construct an SDK is available
on the companion CD-ROM. This info, along with updated information
and application examples, is also available on the web site for this book:
http://www.hte.com/echdbook. All the information needed to build the SDK
is available there, as well as information on how to order the SDK assembled
and tested.

While searching for an appropriate text for one of the courses I teach in
embedded computer engineering, I was unable to locate a book that covered
the topic adequately. An earlier version of this book was written to accom­
pany that course and has since evolved into what you see here. The course
is offered at the University of California, San Diego Extended Studies, and
is titled “Embedded Controller Hardware Design.” The same courses may
also be taken in an on-line format using the Internet, and can be found at
http://www.hte.com/uconline/ecd The goals of the course and the book are
very much the same: to describe the right way to design embedded systems.

While no prior knowledge of microcontrollers or microprocessors is required,
the reader should already be familiar with basic electronics, logic, and basic
computer organization. Chapter one is intended as a review of those basic
concepts. Next there is a general overview of microcontroller architecture,
and a specific microcontroller chip architecture, the 8051 family, is introduced

x Preface

and detailed. The 8051 was chosen because it can be interfaced to external
memory, has simple timing specs, is widely used and available from a number
of manufacturers. The concepts of worst-case design and analysis are described,
along with techniques for hardware interfacing. A good embedded design
requires familiarity with the underlying memory technology, including ROM,
SRAM, EPROM, Flash EPROM, EEPROM storage mechanisms and devices.
The processor bus interface is then covered in general form, along with an
introduction to the 8051’s bus interface. Most embedded designs can also
benefit from the use of user programmable logic devices (PLD). This subject
is too complex for in-depth coverage here, so PLD technology is covered from
a relatively high level. The central theme of designing an embedded system
that can be proven to be reliable is illustrated with a simple embedded con­
troller. The iterative nature of the design process is shown by example, and
several design alternatives are evaluated. With the central part of the design
completed, the remaining chapters cover the various types of I/O interfaces,
bus operations, and a collection of information that is seldom included in the
usual sources, but is often handed down from one engineer to another.

I hope that you will find this book to be useful, and welcome any observations
and contributions you may have. If you should find any errors in the text, or if
you know of some good embedded design resources, please feel free to contact
me directly by e-mail: ken.arnold@ieee.org

1 CHAPTER ONE1

Review of Electronics
Fundamentals

Why are microprocessors and microcontrollers designed into so many different
devices? While there are many dry and practical reasons, I suspect one of the
strongest motivations for using a microprocessor is simply that it is a lot more fun.

Over the past few decades of the so-called “computer revolution,” I have seen
many products and projects that could have been handled without resorting
to a microprocessor. Yet there is always a tendency to rationalize the choice of
a micro-based solution by economic or technical arguments to support the
decision. In fact, most of the really excellent products were successful to a great
extent because they were fun to develop. Many of the best product ideas have
occurred when someone was “playing” with something they were interested
in. In my own experience, I have found learning something new is much
easier and more effective when I am “just playing around” rather than trying
to learn in a structured way or against a deadline. Studies of various educa­
tional methods also indicate “coached exploration” is more effective than the
traditional methods. These and other observations lead me to the conclusion
that the best way to learn about a microcontroller is by “playing” with one.

No book—no matter how well written—can possibly motivate and educate
you as well as building and playing with a microcontroller. The best way to
learn the concepts in this book is to build a simple microcontroller. Even if it
is capable of nothing more than blinking a light, it will provide a concrete
example of the microcontroller as a tool that can be fun to use. To ease this
effort, a companion system development kit (SDK), is available to accompany
this text. It incorporates the functions of a stand-alone single board computer
(SBC), and an in-circuit emulator (ICE). It also serves as a sample embedded
controller design. The design is included on the CD-ROM and web site for
this book, so anyone can reproduce and use it as a learning tool. By applying

2 EMBEDDED CONTROLLER
Hardware Design

the guidelines set forth in this book to real world hardware, you can learn
to design reliable embedded hardware into other products. Information on
obtaining the SDK can be found in the Preface.

Objectives

Several different skills are required for successful embedded hardware design.
Here are some of the things you will know how to do when you finish this book:

• Interpret design requirements for the design of an embedded controller.

• Read and understand the manufacturer’s specification sheet.

• Select appropriate ICs for the design.

• Interface the CPU, memory, and I/O devices to a common bus.

• Design simple I/O (input/output) interfaces.

• Define the decoding and interconnection of the major components.

• Perform a worst-case analysis of the timing and loading of all signals.

• Understand the software development cycle for a microcontroller.

• Debug and test the hardware and software designs.

These tasks represent the major skills required in the successful application
of an embedded micro. In addition, other abilities—such as the design and
implementation of simple user programmable logic—will be covered as
required to support the proficient application of the technology.

Embedded Microcomputer Applications

There is an incredible diversity of applications for embedded processors.
Most people are aware of the highly visible applications, but there are many
less apparent uses. Many of the projects my students have chosen turned out
to be of practical use in their work. However, they have covered the entire
range from the economically practical to the blatantly absurd. One practical
example was the use of a microprocessor to monitor and control the ratio of
ingredients used in mixing concrete. About a year after the student imple­
mented the system, he wrote to inform me that the system had saved his com­
pany between two and three million dollars a year by reducing the number

3	 CHAPTER ONE
Review of Electronics Fundamentals

of “bad batches” of concrete that had to be jack hammered out and replaced.
Another example was that of a student who suspended a ball by airflow gener­
ated by a fan and provided closed loop control of the ball’s position with the
microprocessor. The only thing that many of the student projects really had
in common was the use of a microcontroller as a tool.

Some of the actual commercial applications of embedded computer controls
that the author has been directly involved with include:

•	 A belt measures a person’s heart rate and respiration that signals an alarm
when safe limits are exceeded. A radio signal is then transmitted to a
microcontroller in a pocket pager to display the type of problem and the
identity of the belt.

•	 An environmental system controls the heating ventilating and air condi­
tioning in one or more large buildings to minimize peak energy demands.

•	 A system that measures and controls the process of etching away the
unwanted portions of material from the surface of an integrated circuit
being manufactured.

•	 The fare collection system used to monitor and control entry to a rapid
transit system based on the account balance stored on the magnetic stripe
on a card.

•	 Determination of exact geographic position on the earth by measuring the
time of arrival of radio signals received from navigational beacons.

•	 An intelligent phone that receives radio signals from smoke alarms, intru­
sion sensors, and panic switches to alert a central monitoring station to
potential emergency situations.

•	 A fuel control system that monitors and controls the flow of fuel to a
turbine jet engine.

Selecting a particular processor for a given application is usually a function of
the designer’s familiarity with a particular architecture. While there are many
variations in the details and specific features, there are two general categories
of devices: microprocessors and microcontrollers. The key difference between
a microprocessor and a microcontroller is that a microprocessor contains only a
central processing unit (CPU) while a microcontroller has memory and I/O
on the chip in addition to a CPU. Microcontrollers are generally used for
dedicated tasks. Microcomputer is a general term that applies to complete com­
puter systems implemented with either a microprocessor or microcontroller.

4 EMBEDDED CONTROLLER
Hardware Design

Microcomputer and Microcontroller Architectures

Microprocessors are generally utilized for relatively high performance appli­
cations where cost and size are not critical selection criteria. Because micro­
processor chips have their entire function dedicated to the CPU and thus have
room for more circuitry to increase execution speed, they can achieve very
high-levels of processing power. However, microprocessors require external
memory and I/O hardware. Microprocessor chips are used in desktop PCs
and workstations where software compatibility, performance, generality, and
flexibility are important.

By contrast, microcontroller chips are usually designed to minimize the total
chip count and cost by incorporating memory and I/O on the chip. They are
often “application specialized” at the expense of flexibility. In some cases, the
microcontroller has enough resources on-chip that it is the only IC required
for a product. Examples of a single-chip application include the key fob used to
arm a security system, a toaster, or hand-held games. The hardware interfaces
of both devices have much in common, and those of the microcontrollers are
generally a simplified subset of the microprocessor. The primary design goals
for each type of chip can be summarized this way:

• microprocessors are most flexible

• microcontrollers are most compact

There are also differences in the basic CPU architectures used, and these
tend to reflect the application. Microprocessor based machines usually have
a von Neumann architecture with a single memory for both programs and data
to allow maximum flexibility in allocation of memory. Microcontroller chips,
on the other hand, frequently embody the Harvard architecture, which has
separate memories for programs and data. Figure 1-1 illustrates this difference.

CPU CPU Program
Memory

Data
Memory

Program
and Data
Memory

Figure 1-1: At left is the von Neumann architecture; at right is the Harvard architecture.

One advantage the Harvard architecture has for embedded applications is due
to the two types of memory used in embedded systems. A fixed program and
constants can be stored in non-volatile ROM memory while working variable

5	 CHAPTER ONE
Review of Electronics Fundamentals

data storage can reside in volatile RAM. Volatile memory loses its contents
when power is removed, but non-volatile ROM memory always maintains its
contents even after power is removed.

The Harvard architecture also has the potential advantage of a separate inter­
face allowing twice the memory transfer rate by allowing instruction fetches
to occur in parallel with data transfers. Unfortunately, in most Harvard archi­
tecture machines, the memory is connected to the CPU using a bus that limits
the parallelism to a single bus. A typical embedded computer
consists of the CPU, memory, The Real

World and I/O. They are most often
connected by means of a Figure 1-2: Typical bus-oriented

microcomputer.
shared bus for communication,
as shown in Figure 1-2. Microntroller

Functions

The peripherals on a microcon­
troller chip are typically timers,
counters, serial or parallel data
ports, and analog-to-digital and
digital-to-analog converters
that are integrated directly on
the chip. The performance of
these peripherals is generally
less than that of dedicated
peripheral chips, which are
frequently used with microprocessor chips. However, having the bus connec­
tions, CPU, memory, and I/O functions on one chip has several advantages:

CPU I/O

Peripheral

DevicesMicroprocessor
Functions

Memory

•	 Fewer chips are required since most functions are already present on the
processor chip.

•	 Lower cost and smaller size result from a simpler design.

•	 Lower power requirements because on-chip power requirements are much
smaller than external loads.

•	 Fewer external connections are required because most are made on-chip,
and most of the chip connections can be used for I/O.

•	 More pins on the chip are available for user I/O since they aren’t needed
for the bus.

•	 Overall reliability is higher since there are fewer components and
interconnections.

6	 EMBEDDED CONTROLLER
Hardware Design

Of course there are disadvantages too, including:

•	 Reduced flexibility since you can’t easily change the functions designed
into the chip.

•	 Expansion of memory or I/O is limited or impossible.

•	 Limited data transfer rates due to practical size and speed limits for a
single-chip.

•	 Lower performance I/O because of design compromises to fit everything
on one chip.

Digital Hardware Concepts

In addition to the CPU, memory, and I/O building blocks, other logic circuits
may also be required. Such logic circuits are frequently referred to as glue logic
because they are used to connect the various building blocks together. The
most difficult and important task the hardware designer faces is the proper
selection and specification of this “glue logic.” Devices such as registers,
buffers, drivers and decoders are frequently used to adapt the control signals
provided by the CPU to those of the other devices. While TTL gate level logic
is still in use for this purpose, the programmable logic device (PLD) has be­
come an important device in connecting the building blocks. Contemporary
microcontroller designers need to acquire the following skills:

•	 Interpretation of manufacturers specifications

•	 Detailed, worst case timing analysis and design

•	 Worst case signal loading analysis

•	 Design of appropriate signal and level conversion circuits

•	 Component evaluation and selection

•	 Programmable logic device selection and design

The glue logic used to join the processor, memories, and I/O is ultimately
composed of logic gates, which are themselves composed almost entirely of
transistors, diodes, resistors, and interconnecting wires. In order to under­
stand the basic operation of the glue logic, we are going to begin at the com­
ponent level with a review of basic electronics concepts. These concepts will
be presented as fluid flow analogies.

7 CHAPTER ONE
Review of Electronics Fundamentals

Voltage, Current, and Resistance

In Figure 1-3, a battery provides Voltage Source Positive Pressure is
Pressure analagousa voltage source for electricity, to Voltage

much like a pump provides a
pressure source for a fluid. Voltage,
or pressure, is required to produce
current flow in the circuit.

NegativeThe voltage source provides the Pressure
pressure “motivation,” if you will,
for current flow. Resistance pro- Figure 1-3: Voltage in an electrical circuit is

analogous to pressure in a fluid.
vides a limiting constraint on the
amount of current that will actually flow. The resistor will allow a current to
flow through it that is proportional to the voltage across it, and inversely
proportional to the resistance value. Higher resistance is like a smaller aperture
for the fluid to flow through. The
resistance results in a voltage, Restricts

Resistor Current
or pressure drop, across the
resistance as long as current is
flowing in the resistor. Figure 1-4
illustrates this. Restriction of

Current Flow
The wiring connecting the com­
ponents in a circuit is like the
piping connecting plumbing

Figure 1-4: Resistance in an electrical circuit is
components that let a fluid flow. analogous to a restriction in the flow of a fluid.

The flow of current in the circuit
is controlled by the magnitude of the voltage (pressure) and the resistance
(pressure drop) in the circuit. In Figure 1-5, the battery provides a voltage to
force current through the resistor. The magnitude of the voltage (V) generated
by the battery is developed across the resistor, and the magnitude of the resis­
tance (R), determine the current (I). Note the “return” current path is often
shown as “ground,” which is the reference voltage used as the “zero volts”
point. In this case, current flows from the positive battery terminal, through
the wire, then the resistor, then through the “ground” connection to the
minus terminal of the battery. This is usually not the same as earth ground,
which provides a connection to a stake or pipe literally stuck in the ground.
The magnitude of the current in this case is I = V / R by re-arranging the

8 EMBEDDED CONTROLLER
Hardware Design

equation V = I * R, as shown in Figure 1-5. This is known as Ohm’s law.
Another way to look at it is that whenever current flows through a resistor,
there is a drop in voltage
across the resistor due
to the restriction
in current.

Real components are
not the perfect voltage
sources, resistances,
etc. we have discussed
so far. They have para- Figure 1-5: Voltage across R is equal to current multiplied by resistance.

Power dissipated in Resistor
is P = I2R = V I =

Positive
Pressure

Zero
Reference
Atmospheric
Pressure

'ground'

 E2

R

Current (I)
through
Resistor (R)
causes

drop (V)

V = I R

V R

+

I

Zero Volts

Voltage

sitic values that limit
their performance in the real world and are subject to other limitations, such
as operating temperature, power limits, etc. Current flows only through a
complete circuit, and in most cases (for a positive power supply) current
flows from the power source through the circuitry and returns to the power
supply through the common “ground” connection. Current flowing through
any resistance results in the dissipation of power as heat. The power dissi­
pated is P = I2R = V*I = V2/R. Note that voltage is sometimes denoted by the
variable V and sometimes by E, for electromotive force.

All practical components have some resistance. Real batteries have an internal
resistance, for example, which provides an upper limit to the current the
battery can supply to an external circuit. Real wires have resistance as well,
so the actual performance of a circuit will deviate somewhat from the ideal.
These effects are obvious in some cases, but not in others. In an automobile
starting circuit, it’s not surprising that the battery, supplying 12 volts to a
starter with internal resistance on the order of 0.01 to 0.1 ohms, will result in
currents of hundreds of amperes in order to start the engine. On the other
hand, while consulting with a prominent notebook computer manufacturer,
I uncovered a design error resulting in an internal current of hundreds of
amperes flowing in the circuit for a few nanoseconds. Obviously, this wreaked
havoc on the operation of the computer, and generated a great deal of electro­
magnetic noise!

One of the things you will learn in this book is how to avoid those kinds of
mistakes. It’s also important to remember that power is dissipated in any
resistance present in the circuit. The power is proportional to the voltage times

9 CHAPTER ONE
Review of Electronics Fundamentals

the current across the resistance, which is dissipating the power. In the last two
examples, the amount of power dissipated instantaneously is quite high while
the current is flowing. When the current pulse is only a few nanoseconds long,
however, it may not be
obvious, since there won’t

Diode is analgousbe much heat generated. Current
to a one-way valve.
Current can only
flow in one direction.

Diodes Diode
“On” Valve

“Open”The diode is a simple
semiconductor device
acting as a “one way” +

Current Flows current valve. It only
lets current flow in one
direction. Figure 1-6
illustrates how the Diode Valve
diode operates like a “Off” “Closed”

“one-way” fluid valve.

+ No Current
(Purists please note: Flows

This book does not use
electron current flow.
All electrical current
flow will be “positive” or Figure 1-6: A diode to electricity is analogous to a valve in the
“conventional” current flow of a fluid.

flow, meaning current
always flows from the most positive terminal to the most negative terminal of
a component. The use of positive current flow follows the intuitive direction
of the arrows inherent in the component drawings for diodes, transistors, etc.)

Transistors

The flow analogy can also be used to model how a transistor operates in a logic
circuit. The transistor is an amplifier. It uses a small amount of energy to control
a larger energy source, just as a valve controls a high-pressure water source.
There are two kinds of transistors: bipolar and field-effect transistors (FETs).
We will look at bipolar transistors first; these amplify current. A small amount

10 EMBEDDED CONTROLLER
Hardware Design

of current flows in the control
circuit (the transistor base-
emitter circuit) to turn the tran- Base

sistor on. This control current is
amplified (multiplied by the gain
or beta of the transistor) and “Source”

Current
allows a larger current to flow in Flow

the output circuit (the collector-

emitter circuit). Once again, the

“Sink”

P
N
P

Collector

Emitter

Control

Current
Flow

device is not perfect because of Figure 1-7: Operation of a bipolar PNP transistor.
the resistance, current, gain, and
leakage limitations of real transistors. Bipolar transistors come in two polari­
ties, NPN and PNP, with the difference being the direction in which current
flows for normal operation. A
bipolar PNP transistor is shown
and modeled in Figure 1-7. Base

Emitter

N
P
N

Control

Current
Flow

Collector

“Sink”

“Source”

For most of the illustrative circuit
examples in this book, we will be
using NPN transistors, as shown Current

in Figure 1-8. Flow

Mechanical Switches Figure 1-8: Operation of a bipolar NPN transistor.

Mechanical switches are useful for direct input to digital circuits. One of the
more convenient versions is a bank of rocker switches packaged into a module
that can fit into the same location as a standard chip. The dual in-line package,
or DIP, switch is one of the easiest ways to add multiple switches to a micro-
controller design. The mechanical switch has extremely low “on” resistance
and high “off” resistance, unlike most semiconductor switches. Figure 1-9
shows a typical DIP switch and the schematic symbol for it.

O
FF

 O
N

Figure 1-9: 8-position DIP switch and schematic equivalent.

11 CHAPTER ONE
Review of Electronics Fundamentals

Transistor Switch ON

Transistors can be configured to function as switches. As can be seen in
Figure 1-10, an NPN transistor operating as a current controlled switch can
be used to build a simple inverter. It changes a logic one on its input to a logic
zero at its output, and vice versa. In this case, logic one is represented as a
positive voltage, and a logic zero is represented by zero volts. The logic one
input (positive input voltage) is supplied through a resistor from the power
supply voltage to the transistor base terminal, resulting in a small base control
current into the base.

Transistor Inverter Transistor Inverter
Input 1 -> Output 0 Equivalent Circuit

“1”

+

“0” “1”

+

“0”

ON
(shorted)

Resistor

Current

Output
Sinks
Current

ON
(shorted)

Output
Sinks
CurrentTransistor

Sources

Transistor

Transistor Switch “ON” Equivalent Circuit

Figure 1-10: The transistor inverter; input = 1 and transistor ON. The transistor
ON configuration is at left and the equivalent circuit is at right.

The transistor is used because it has gain allowing a larger output current
to flow as controlled by a weaker input. When the transistor is turned on
as much as it can be, the collector emitter circuit looks almost like a short
circuit, effectively connecting the output to ground or zero volts. This gives
a logic zero on the collector output. When the transistor collector is shorted
to ground, current flows from the supply through the resistor and into the
transistor collector to ground. The transistor is said to sink the resistor
current into ground. If there is an external load, such as another inverter or
gate, connected to the collector output, the transistor can also sink current
from the load. This is also referred to as pulling down the output voltage.
The current sinking capacity of the transistor limits the number of devices
this inverter can drive.

12 EMBEDDED CONTROLLER
Hardware Design

Transistor Switch OFF

When the input is connected to logic zero (ground voltage), no current flows
into the base of the transistor, since its base and emitter terminals are at the
same voltage. When there is no current flowing in the base, the transistor will
not allow current to flow in the collector emitter circuit either. As a result, the
circuit behaves as if the transistor was removed from the circuit. The output
resistor will source current to any potential load. The output is pulled up to
the supply voltage, resulting in a logic one at the output. Once again, there is
a limit to the resistor’s ability to source current, resulting in a limit to the
number of loads that can be attached to this circuit’s output. Notice these two
limits are defined by the ability of the transistor to pull down the output, and
the resistor’s ability to pull up the output become the main limits to its ability
to drive other devices. Gates can be constructed by adding diodes or transis­
tors to the inverter circuit in Figure 1-11.

Transistor Inverter Transistor Inverter
Input 0 -> Output 1 Equivalent Circuit

“0”

+

“1” “0”

+

“1”

OFF
(open)

Resistor

Current

Input
Sinks

Current

Resistor

Current

OFF
(open)

Transistor

Sources Sources

Transistor

Transistor Switch “OFF” Equivalent Circuit

Figure 1-11: The transistor inverter; input = 0 and transistor OFF.

The transistor OFF configuration is at left and the equivalent circuit is at right.

The FET as a Logic Switch

Most of the logic devices used in highly integrated circuits do not use bipolar tran­
sistors. Instead, they use field effect transistors. FETs perform a similar function
to the bipolar transistors discussed earlier, but they are voltage Drain
controlled. While the current flowing in the base
controls bipolar transistors, the voltage between the

Gate
gate and source controls field effect transistors. The
gate voltage of a field effect transistor controls the
current flowing in the drain-source circuit. The Figure 1-12: Field

effect transistor (FET) Source symbol for the FET shows the gate to be insulated schematic diagram.
from the source-drain circuit, as shown in Figure 1-12.

13 CHAPTER ONE
Review of Electronics Fundamentals

This type of FET is referred to as a MOSFET (metal oxide semiconductor FET),
since the insulating material is silicon dioxide (SiO2), commonly known as
glass (for early devices, the gate was made
of metal). Like bipolar NPN and PNP

Drain Channel

Gate

Insulator

Source

Conductor SiO2

transistors with opposite polarity, FETs
come in N- and P- channel varieties.
The N- and P- channels refer to the
polarity of the source drain element
of the device. A cross-section view Conductors

of a FET is shown in Figure 1-13. Figure 1-13: Field effect transistor cross-section.

NMOS Logic

The conductive state of the FET’s channel is what allows or prevents current
from flowing in the device. For a typical logic N-channel MOSFET, the channel
becomes conductive when the gate has a positive voltage with respect to the
source, allowing current to flow between the drain and source terminals. When
the gate is at the same voltage as the source, no current flows. The design of
MOS logic circuits can be almost exactly equivalent to the bipolar inverter we
saw earlier, substituting an N-channel MOSFET for the bipolar NPN transis­
tor. In fact, the most of the early microcontroller integrated circuits were
manufactured using variations of this method, and are referred to as NMOS
logic. As can be seen from Figure 1-14, the NMOS FET circuit behaves in an
equivalent way to the NPN transistor inverter. When the gate (control input)
of the NMOS FET is at a positive voltage, the FET is ON, effectively shorting
the source and drain pins. When the gate is at 0 volts, the FET is OFF, open­
ing the circuit between the source and drain. Older NMOS logic ICs use this
type of circuit. The original 8051 microcontroller was an NMOS processor.

NMOS FET Inverter NMOS FET Inverter

Input 1 -> Output 0 Input 1 -> Output 0

“1”

+

“0” “1”

+

“0”

NMOS FET
ON

(shorted)

Resistor

Current

Output
Sinks
Current

NMOS FET
OFF
(open)

Sources

Figure 1-14: NMOS inverter circuit.

14 EMBEDDED CONTROLLER
Hardware Design

CMOS Logic
CMOS logic (complementary symmetry MOS) is another form of MOS logic.
It has advantages over NMOS logic for low power circuitry and for very complex
integrated circuits. NMOS logic is relatively simple, but it has one serious draw­
back: it consumes a significant amount of power. In fact, it would be impossible
to manufacture the largest ICs using NMOS logic, as the power dissipated by
the chip would cause it to overheat. This is the main reason CMOS logic has
become the dominant form of logic used for large, complex ICs. Instead of
using a resistor to source current when the output is high, a CMOS device
uses a P-channel MOSFET to pull the output high. CMOS logic is based on
the use of two complementary FETs that switch the output between the
power supply and ground. A simple CMOS inverter is shown in Figure 1-15.

CMOS Inverter	 Equivalent Equivalent
Output LOW Output HI

+ Power

P-channel P FET OFF P FET ON
Sources
Current

Output HIInput Output Output LOW

N FET ON N FET OFF
SinksN-channel Current

Ground

Figure 1-15: CMOS inverter circuit and equivalent output.

CMOS logic uses two switches: one P-channel pull-up transistor, and one
N-channel pull-down device to pull the output low or high, one at a time.
CMOS logic is designed with an N-channel device that turns on and conducts
when the gate voltage is at logic one (positive voltage), and the P-channel
device turns on when the gate is at ground voltage. A CMOS inverter is com­
prised of a pair of FETs, one device of each type, as shown in Figure 1-15.

When the transistor gate inputs are at logic one (positive voltage), the
P-channel device is off, and the N-channel device is on, effectively connecting
the output to ground, or logic zero. Likewise, when the input is grounded, the
P-channel device turns on and the N-channel device turns off, effectively
connecting the output to the positive supply voltage, or logic one. Gates and
more complex logic functions can be constructed by using series and parallel-
connected MOSFETs in circuits similar to the one above. The gate of a

15 CHAPTER ONE
Review of Electronics Fundamentals

MOSFET, as implied by the symbol, is essentially an open circuit. In fact, the
gate of a MOSFET does have an extremely high resistance. The operation of
the MOSFET’s channel is controlled by the voltage of the gate, unlike the
bipolar NPN transistor we examined in the inverter, which is controlled by
input (base) current. Bipolar transistors are current amplifiers, with their
output current being controlled by their base current. FET outputs, on the
other hand, are dependent on the gate voltage.

Since almost no current flows in a CMOS output when it is driving a CMOS
gate input in the steady state condition, these logic devices consume much
less power than the other types. MOS logic has some other advantages over
bipolar logic, since there is almost no input current (less than one nanoampere,
or 10-9 ampere), so it does not need to exact a DC current load on the device
driving it. This is good news, because it means that the input current of a
CMOS device does not limit the number of gates that can be connected to the
output of the driving gate. The number of gate inputs that a single gate output
can drive is the gate fan-out. Fan-out applies between gates of the same logic
family, as different families of logic have different output capabilities and their
inputs present different loads.

Now for the bad news about the high input resistance of MOS devices: the
insulation separating the input from the channel is very thin (measured in
angstroms). This thin layer can easily be punctured by electrostatic discharge
(ESD), such as occurs regularly when dissimilar materials rub against one
another. Just walking across the room can generate tens of kilovolts, which is
more than enough to destroy a MOS device. As a result, special precautions
must be taken to prevent damage to MOS devices. When handling these
devices, it is important to ground your body before touching the device, and
to also keep the device at or near ground. Special wrist straps and workspace
mats are available to assist in keeping static voltages from building up and for
dissipating them when they do occur. Special, conductive bags and containers
should be used when possible to contain sensitive devices.

CMOS power consumption is usually dominated by the power consumed dur­
ing the transition of a logic device from one state to another. As a result, pure
CMOS devices consume only a few microamperes of current when they are not
switching, and the bulk of the current drawn is a function of clock frequency.
The higher the clock frequency, the greater the current consumption. For pure
CMOS, the power supply current is linearly proportional to the clock rate.

16 EMBEDDED CONTROLLER
Hardware Design

Mixed MOS

Many logic devices labeled as CMOS are actually a mixture of NMOS and CMOS,
because the manufacturer needs to compromise the extremely low power of
CMOS with the performance of NMOS logic. This can be a problem for design­
ers of battery-powered systems, since the current requirement (and the resulting
battery life) of a pure CMOS circuit is orders of magnitude better than an NMOS
circuit. Many CMOS memories are actually mixed MOS, and are not appropri­
ate for battery-powered systems. True CMOS chips can retain their contents
for years using only a single coin cell to maintain power to the memory.

Real Transistors Don’t Eat Q!

So far we have described the various types of transistors as perfect switches
that have zero resistance when they’re on and infinite resistance when they’re
off. When we examine the actual behavior, we find that real transistors do not
exhibit these characteristics. A transistor switch may have tens or hundreds
of ohms of resistance when it is
on, and hundreds or even tens of

Equivalent Equivalent
thousands of ohms of “leakage” Output LOW Output HI

resistance when it’s off. As a
P FET OFF

result, the logic outputs aren’t P FET ON
Sources
Current

across Switch
perfect either. When the tran- Voltage Drop +

Resistance
Output HI

sistor is on, the output voltage
Voltage Drop + Output LOW –

is a function of the output across Switch

–
current, due to the voltage Resistance

N FET ON
Sinks
Currentdrop across the resistance. As

N FET OFFFigure 1-16 shows, the output

voltage of a logic device will

depend upon how much cur­

rent is flowing in the output Figure 1-16: Logic output voltage is current dependent.

and the resistance of the switch.

Unfortunately, the switch resistance is also non-linear so that the switch resis­
tance changes as the voltage across the switch changes. This makes it difficult
to picture the output behavior under different operating conditions. The
behavior will also differ from one device to another, over temperature, and so
on. Manufacturers only specify the output characteristic at one point on the

17 CHAPTER ONE
Review of Electronics Fundamentals

curve, Vo at Io max. As a result,
the best we can do is to look

V OH V OL

Vcc
VOH max

Figure 1-17. VOL max

-I OH IOL

Logic Symbols Figure 1-17: Output voltage Vo versus current Io.

Logic symbols are used to represent the logic functions in a more abstract way,
allowing the designer to specify the logical function of a circuit without getting
into the details of the underlying components (such as the transistors and
resistors). The logic symbols used in this text represent those that are most
commonly used in commercial documentation. There are other standards, such
as the ANSI/IEEE standard gate level symbols, but they are not encountered

I O
H

 m
ax

I O
L

m
ax

at the output characteristics
graphically, as shown in

as frequently in practice. Figure

A B F
0 0 1
0 1 1
1 0 1
1 1 0

NAND
F = AB

A B F
0 0 1
0 1 0
1 0 0
1 1 0

 NOR
F = A+B

A B F
0 0 1
0 1 0
1 0 0
1 1 1

 XNOR
F = A+B

A
B F A

B F A
B

A F
0 1
1 0

Inverter
 F = A

F

A B F
0 0 0
0 1 0
1 0 0
1 1 1

 AND
F = AB

A B F
0 0 0
0 1 1
1 0 1
1 1 1

 OR
F = A+B

A B F
0 0 0
0 1 1
1 0 1
1 1 0

 XOR
F = A+B

A
B F A

B F A
B

A F
0 0
1 1

Buffer
 F = A

FA F

F

1-18 shows the logic symbols for
different gates, and their functions
are described in the truth tables.

The logic symbols in Figure 1-18
show the shapes and Boolean logic
functions for the most common
gate configurations. The buffer

Adevice is a triangle—the symbol
for an amplifier—because it
amplifies the input signal, allowing
an increase in the number of loads
that can be driven. Note that a
small circle, often referred to as a
“bubble,” on an input or output
terminal designates a logical inver- Figure 1-18: Logic symbols, symbolic notation,

and truth tables.
sion. Thus the inverter is shown as
a triangle (amplifier) with a bubble on the output to signify the logic level
inversion on the output. The logic voltage levels for TTL logic are:

Positive Logic Corresponding TTL Logic Voltages
0 = false = lowest voltage level 0 = input voltages 0 to 0.8 volts (low)
1 = true = highest voltage level 1 = input voltages 2 to 5 volts (high)

18 EMBEDDED CONTROLLER
Hardware Design

This means that a TTL compatible logic input is guaranteed to respond to an
input signal between 0 and 0.8 volts as a logic zero, and input voltages from
2 to 5 volts as a logic one. Note that voltages between 0.8 and 2 volts are not
valid logic levels.

Logic voltage levels are different for different types of logic, but the most
common logic levels are those corresponding to the original TTL (transistor­
transistor logic), using a 5 volt power supply. CMOS levels, using 3 or 5 volt
power, are also common. TTL and CMOS logic—like almost every other type
of logic in common use —are called positive logic because the most positive
voltage corresponds to the logic one value.

Tri-State Logic

Tri-state logic does not refer to orderly thinking in a three state geographic
region! When we speak of binary (base two number) values, we mean that a
given bit or logic signal can take on either one of two valid states (zero or
one) at any instant in time. A logic gate that is not forcing its output to be
either one or zero is said to be tri-stated. Tri-state logic does not refer to base
three numbers, but rather to a third invalid logic state when the output of a
logic device is neither sinking nor sourcing current. This so-called third state
is really an undefined

Tri-State Inverting Buffer Output ENabled Output DISabledcondition, because the
?device output is not A Y A A A OFF

Input HI-ZOutputforcing a logic level on
OE 1 0

its output. It is said to be Truth Table
in a floating, high imped- A OE Y

0 1 1

1 1 0

0 0 ?

1 0 ?

NC
ance, passive, or Hi-Z Output Output

Switch Switchstate, since the output OFF
(closed) (open)

Hi-Z ON
circuits are effectively Hi-Z

disconnected. A tri-state Symbol and Function Equivalent Circuit – Active and Passive

driver connected to one
signal wire of the bus is Figure 1-19: Active and passive states of a tri-state buffer.

shown in Figure 1-19.

On the left is an inverting buffer with an enabled tri-state output. On the
right side is an example showing two of the same type of buffers, with the
top device in the disabled or passive state, and the lower device is enabled

19 CHAPTER ONE
Review of Electronics Fundamentals

or actively driving the data bus to a logic one level. The control signal deter­
mines whether the output is passive or active, and is called the output enable
or OE signal. The device shown above is actively driving the bus whenever
the OE control line is at a logic one level, and is passive when the OE line is at
a logic zero level. Most of the time, output enable signals are active low, mean­
ing that the output is enabled when the /OE signal is low, and passive when
the /OE signal is high. This is shown on the logic symbol with an inversion
bubble where the enable signal enters the logic device.

As computer circuits become more dense and complex, the connecting wires
have become increasingly difficult to route and interconnect. This is especially
true on a densely packed integrated circuit, where it turns out that the wiring
is more valuable than the logic gates! On one common CPU chip, 68% of the
chip area is used for interconnect wiring. Even on a circuit board, it is impor­
tant to use the board wiring in an efficient way. Since there are many parallel
address and data lines that must go to multiple chips, the multiplexing approach
makes it practical to connect many devices. The purpose for using tri-state
logic is to allow multiple devices to share wires by taking turns one at a time.
This may sound a bit silly, but it is just one form of multiplexing, or sharing a
resource that needs to be allocated among multiple devices. When the resource
is a collection of parallel data wires, referred to as a data bus, and the bus is
shared by multiple microcomputer CPU and peripheral devices transferring
information one at a time in sequence, it is referred to as a multiplexed data bus.

Timing Diagrams

The timing diagram is the standard “language” of illustrating timing relation­
ships between different parts of a design. In order to understand the relation­
ship of different signals with respect to time, it is necessary to learn how to
read and interpret timing diagrams. Figure 1-20 shows examples of asynchro­
nous (un-clocked or combinatorial gates) and synchronous (clocked flip-flop)
logic. The notation used in this book is representative of that used in most
component specifications. Timing specifications, such as delay, setup, and
hold times, specify the limits under which the device is guaranteed to operate
as intended. If those specifications are violated, the device may very well
operate correctly most of the time. However, a change in temperature, voltage,
or variations from unit to unit may make the circuit unreliable. The most

20 EMBEDDED CONTROLLER
Hardware Design

undesirable result of timing violations is that the circuit makes very infre­
quent errors, perhaps one error in hundreds of hours of operation. If you have
ever wondered why your PC crashes mysteriously for no apparent reason,
timing specification violations may well be the cause!

NAND NOR

A
 D QA FF BB CK Q

Rise

Delay

Fall

Time

Time

CKA

B D

F=A*B Q

G=A+B Q

Hold

Setup

Delay

Figure 1-20: Timing diagram notation examples.

Timing relationships are particularly important for signals that are “time shared”
on a single wire. A group of wires that carries different information at different
times is also called a bus.

Multiplexed Bus

In order to describe the timing of
such a shared data bus, it is neces­
sary to define some notation for
timing diagrams. The notation used
in this book is shown in Figure 1-21.

The terminology for timing param­
eters is covered in a later chapter,
but the basic concept for time
multiplexed data on a bus is shown
in Figure 1-21. The two devices are
alternately enabled to drive the data
bus wire, allowing each to drive
the bus in turn. Only one device is
allowed to drive the bus at a time
when it is operating correctly.

Data from A

Bus
Data
to A

New Data from A

Data from B

A B new A

Device A

DA

OEA

Data
to Bus
from A

Enable
Output

A to Bus

Data Bus

Bus
Data
to B

Device B

DB

OEB

Data
to Bus
from B

Enable
Output
B to BusBUS

OEA

DA

OEB

DB

BUS

Tri-State Data Bus To Other Devices

Figure 1-21: Time multiplexed data bus and timing.

21 CHAPTER ONE
Review of Electronics Fundamentals

Timing diagrams are a critical method to allow accurate and unambiguous
representation of the time related operations of digital circuits, which we will
be using to understand and document the correct sequence of operations for
microcomputer systems. Timing analysis, using these diagrams, allows the
designer to determine safe and reliable limits to proper operation of the various
circuits in the system. It is better to take a little more time to design a circuit
correctly from the start than it is to find and fix bugs during testing. This is
especially true because of the increasing cost of fixing a bug as a product
progresses through production and into the field.

Loading and Noise Margin Analysis

In addition to timing, the designer must consider the voltages and loads at the
logic inputs and outputs. If the output of one gate is connected to the input of
another, the designer must assure that the logic voltages are compatible. Once
again, just as for the timing, violations of these specifications often result in
infrequent errors that are very tricky to reproduce. Again, prevention is much
simpler than tracking down bugs as they appear in production units. This
topic is the subject of Chapter Three.

The Design and Development Process

Structured design of a microcomputer requires the ability to do the system

design and partitioning from the top down while implementing the system

from the bottom up. The hardware design and development process should

consist of the following steps:

1) Defining the requirements.

2) Collecting information on potential components.

3) Evaluate the components with respect to the requirements.

4) Do a block diagram preliminary design and component selection.

5) Perform a preliminary timing and loading analysis.

6) Define the functions of the “glue logic.”

7) Schematic entry using CAD (computer-aided design) software.

8) Programmable logic device design and simulation.

22 EMBEDDED CONTROLLER
Hardware Design

9) Detailed timing analysis and simulation, adjusting the design as required.

10) Check the signal loading, buffering signals as needed.

11) Document the design and generate a net list and bill of materials.

12) Begin the design and layout of a printed circuit board.

13) Implement the design in breadboard or prototype form.

14) Program the memories and programmable logic as required for testing.

15) Debug and verify operation using oscilloscope, logic analyzer, and

in-circuit emulator.

16) Update and complete documentation as the design changes.

The order of tasks shown is variable, and some of the tasks may be performed
in parallel. Software design is also frequently done in parallel with hardware
design, and sometimes even before the hardware design. This is frequently a
result of the fact that the cost and time required to develop the software exceeds
that of the hardware development. In some cases the cost of modifying existing
programs may be so high as to be impractical. In these cases, it is the designer’s
responsibility to maintain software compatibility with previous hardware designs.

Chapter One Problems

1. If an open-drain N-channel FET transistor is used as a logic output, is it
possible to connect more than one open-drain transistor output to the
same signal? What would the effect of doing so be on the resulting
combined signal?

V
2. If a logic output sinks IOL = 10 milliamperes with an output voltage,

OL
 = 0.5 volts, how much power is dissipated by a 450 ohm resistor

between the output and the 5 volt power supply?

3. How much current must a logic output source, in order to maintain an
output voltage of 2.5 volt when driving a 5 kilohm resistor connected
to ground?

4. In a CMOS inverter, there is a short period of time when both the N- and
P-channel transistors are partially turned on when the input is changing
from low to high or high to low. What effect will this have on power con­
sumption? What characteristic in the input signal would reduce this effect?

23 CHAPTER TWO2

Microcontroller Concepts

One way of looking at a computer system is to consider the successive
“translations” that occur from the high level code (a programming language
such as C++) to the electrical signals that “communicate” with the hardware.
A computer system can be broken down into multiple levels or layers to show
the translation of a specific instruction into a form that can be directly pro­
cessed by the computer hardware. Such hierarchical levels are discussed in
detail in Structured Computer Organization by A.S. Tanenbaum. This hierarchy
is shown in Figure 2-1

High Level Sum := Sum + 1

Assembly MOV BX,SUM INC (BX)

Machine 1101010100001100 0010001101110101 1111100011001101

Register Transfer Fetch Instruction, Increment PC, Load ALU with SUM ...

+Gate

Circuit

Figure 2-1: “Layers” of a computer system.

CK

O O

Language translators such as compilers and assemblers translate high-
level code into machine code that can be executed by the processor. The
primary focus of this book will be from the assembly and machine language
level downward.

24 EMBEDDED CONTROLLER
Hardware Design

Organization: von Neumann vs. Harvard

We introduced the von Neumann and Harvard computer architectures in
Chapter One. The von Neumann machine, with only one memory, requires all
instruction and data transfers to occur on the same interface. This is sometimes
referred to as the “von Neumann bottleneck.” In common computer architec­
tures, this is the primary upper limit to processor throughput. The Harvard
architecture has the potential advantage of a separate interface allowing twice
the memory transfer rate by allowing instruction fetches to occur in parallel
with data transfers. Unfortunately, in most Harvard architecture machines, the
memory is connected to the CPU using a bus that limits the parallelism to a
single bus. The memory separation is still used to advantage in microcontrollers,
as the program is usually stored in non-volatile memory (program is not lost
when power is removed), and the temporary data storage is in volatile memory.
Non-volatile memories, such as read-only memory (ROM) are used in both types
of systems to store permanent programs. In a desktop PC, ROMs are used to
store just the start-up or bootstrap programs and hardware specific programs.
Volatile random access memory (RAM) can be read and written easily, but it loses
its contents when power is removed. RAM is used to store both application
programs and data in PCs that need to be able to run many different programs.

In a dedicated embedded computer, however, the programs are stored permanently
in ROM where they will always be available. Microcontroller chips that are used
in dedicated applications generally use ROM for program storage and RAM for
data storage. Memory technology is crucial to the design and understanding of
embedded computers, and Chapter Four is dedicated to this important topic.

Microprocessor/Microcontroller Basics

There are three groups of signals, or buses, that connect the CPU to the other
major components. The buses are:

• Data bus

• Address bus

• Control bus

The data bus width is defined as the number of bits that can be transferred on the
bus at one time. This defines the processor’s “word size.” Many chip vendors
define the word size based on the width of an internal data bus. For the purposes

25 CHAPTER TWO
Microcontroller Concepts

of this book, however, a processor with eight data bus pins is an 8-bit CPU. Both
instructions and data are transferred on the data bus one “word” at a time. This
allows the re-use of the same connections for many different types of information.
Due to packaging limitations, the number of connections or pins on a chip is
limited. By sharing the pins in this way, the number of pins required is reduced at
the expense of increased complexity in the external circuits. Many processors also
take this a step further and share some or all of the data bus pins to carry address
information as well. This is referred to as a multiplexed address/data bus. Processors
that have multiplexed address/data buses require an external address latch to
separate and hold the address information stable for the duration of a data
transfer. The processor controls the direction of data transfer on the data bus.

The address bus is a set of wires that are used to point to the memory or I/O
location that is to be read from or written to. The address signals must gener­
ally be held at a constant value for some period of time before, during, and
after the data is transferred. In most cases, the processor actively drives the
address bus with either instruction or data addresses.

The control bus is an assortment of signals that determine what kind of informa­
tion is on the data bus and determines where the data will go, in conjunction
with the address bus. Most of the design process is concerned with the logic
and timing of the control signals. The timing analysis is primarily involved
with the relative timing between these control signals and the appearance and
disappearance of data and addresses on their respective buses.

Microcontroller CPU, Memory, and I/O

The interconnection between the CPU, memory, and I/O of the address and
data buses is generally a one-to-one connection. The hard part is designing
the appropriate circuitry to adapt the control signals present on each device to
be compatible with that of the other devices. The most basic control signals
are generated by the CPU to control the data transfers between the CPU and
memory, and between the CPU and I/O devices. The four most common types
of CPU controlled data transfers are:

1) CPU reads data/instructions from memory (memory read)

2) CPU writes data to memory (memory write)

3) CPU reads data from an input device (I/O read)

4) CPU writes data to an output device (I/O write)

26 EMBEDDED CONTROLLER
Hardware Design

In this book, “read” and “input” will be used interchangeably. These terms refer
to the transfer of information from an external source into the CPU. “Write”
and “output” will be used to denote the transfer of data from the CPU to an
external destination. The data direction is defined with respect to the CPU.

Design Methodology

The address decode and control logic shown in Figure 2-2 is the key part of the
design, which requires attention to timing analysis to guarantee signal logic and
timing compatibility between the other blocks. The simplified timing diagram for
such a system is shown
in Figure 2-3. Figure 2-3

CPU I/O

Address
Decode
and Control
Logic

I/O Device Select

D0 _ 7
A0 _ 15	 ADDRESS BUS

CONTROL BUS
RE

A
D

W
RI

TE

RE
A

D
W

RI
TE

C
yc

le
 S

el
ec

t
Memory

Memory Select

DATA BUS

Microcontroller, Control Logic, Memory and I/O

is a generic diagram
and represents a typical
example of a bus cycle
for a typical CPU.

Figure 2-2 (right):
Microcomputer busses.

Figure 2-3 (below):

Generic bus timing example.

Typical Memory Read and Write Cycle

Clock

Read Pulse

Void Memory Read Address

Write Pulse

Void Memory Write Address

Void Read Data Void Write Data

Memory Read

Memory Write

Address Bus

Data Bus

We see that there are two cycles:

•	 Memory Read. The processor places an address on the address bus,
and activates the memory read signal by pulling it low, which causes the
selected memory location to be placed on the data bus.

•	 Memory Write. The processor places an address on the address bus,
data to be written on the data bus, and activates the memory read signal
by pulling it low, which causes the selected memory location to be loaded
with the data the CPU placed on the data bus.

27 CHAPTER TWO
Microcontroller Concepts

Up to this point, we have discussed microcontroller architecture in a very
general form, as it applies to most common devices. In order to go deeper into
the operation of a microcontroller, it is appropriate to present one specific
processor as an example. In order to really understand and apply this informa­
tion to a real hardware and software design, it is necessary to cover one specific
machine architecture in detail. That is what we will do in the next section.

The 8051 Family Microcontroller
Processor Architecture

You might wonder why the 8051 family of processors was chosen for this
purpose, as it is a relatively old processor. If you read current technical journal
articles, you might get the impression that all the action is in 32-bit micros.
That is primarily due to the fact that the companies that sell the high-end
devices are working very hard to put their newest technology in front of their
customers, and they are the ones who write most of the trade articles.

It is important to note that the trade press is always emphasizing the high end
16-bit, 32-bit, and larger processors due to their dependence on the advertising
revenue from chip vendors. Though you would never guess it from reading
these publications, it is only recently that shipments of 8-bit microcontrollers
have exceeded 4-bit units. It will be quite some time before the 16-bit micros
will approach the sales volume the 8-bit units have reached, and the 8-bit
units are still growing in volume. According to one of the leading industry
publications, there are more 8051 derivative CPU chips being produced than
any other 8-bit micro. From this point forward, the 8051 family architecture
will be used. Later on, other architectures and generic features not implemented
in the 8051 will be discussed for completeness. Once you have learned the
concepts of the 8051, you will find that the next architecture you need to use
will be much easier to learn.

The 8051 microcontroller was chosen as the example processor in this book
for several reasons:

•	 The timing specifications are simple and allow a complete detailed timing
analysis within the limited scope of this book.

•	 Interfacing to the processor’s multiplexed address/data bus provides valuable
design experience.

28 EMBEDDED CONTROLLER
Hardware Design

•	 Development tools, including assemblers, simulators and compilers are
readily available as freeware shareware and demo versions.

•	 It is available at a low cost, allowing low cost versions of in-circuit emulators,
peripheral components, and single board computers to be purchased by
the student.

•	 The 8051 is the most popular microcontroller family, with many derivatives
available, and multiple vendors manufacture it.

•	 The 8051 architecture is available in a wide range of cost, size, and perfor­
mance. For example, one version is available in a 20-pin small outline
surface mount package for less than a dollar in volume, and another one
is about eight to ten times the speed of the original 8051.

•	 The 8051 CPU is also available as a building block for custom chip designs,
and is the most popular CPU for “system on a chip” designs. It is also the
only readily available, non-proprietary building block CPU architecture
available for chip design.

Software tools for the 8051 family, such as assemblers, compilers and simulators
are available at no cost on the internet. Hardware tools, such as the combination
software development kit and in-circuit emulator (the SDK which can be used
in conjunction with this book), are available for under $100, and complete
design documentation is available on the web to allow anyone to build their own.

In addition, the 8051 has the simplest timing specifications of a device which
can address external memory, making it practical to go into the details of the
design which are necessary to understand. With less than two dozen timing
specifications (compared to several times as many for most other equivalent
processors), it is possible to cover the timing specifications in detail. Once this
process is understood, it is a straightforward jump to understanding and using
the larger number of equivalent specifications characteristic of other devices.

Introduction to the 8051 Architecture

This section is intended to provide a broad overview of the 8051 microcon­
troller architecture. References to “8051” or “’51” in this book generally indicate
the entire family of 8051 CPU instruction set compatible devices. Since the
original 8051 had an internal read-only memory for programs—which was
defined at the time the chips were fabricated—that device is not appropriate

29 CHAPTER TWO
Microcontroller Concepts

for our study. For flexibility and simplicity, we will be discussing the 8031,
which does not have any internal program memory but instead fetches its
program from an external memory device. Otherwise, almost all the versions
of the processor family share the same features. If one were to do a practical
commercial embedded computer design using an 8051 derivative, one could
take advantage of the additional features that are commonly included in the
more recent devices. For example, the NMOS versions of this family (e.g. 8031)
described here have mostly been displaced by their CMOS counterparts, such
as the 80C31. The 8032 and 80C32 with 256 bytes of internal data RAM and
an additional timer, at about the same cost, have replaced the ’31 versions.
Most of the new versions of these devices have been built upon the features
of the ’32 version. Higher speed versions of the device, such as the Dallas
Semiconductor 80C320, provide throughput equivalent to almost 100 MHz,
compared to the original parts 12 MHz clock. The 8051 CPU element is even
available as a standard building block
for use in designing other chips. There
are also 16-bit superset versions of
the 8051 architecture! A simple 8051
system is shown in Figure 2-4.

Figure 2-4 shows a highly simplified

version of the CPU with external

program and data memory. (An

address latch is also required, but not Figure 2-4: A simple 8051 system

External
Program
EPROM
Chip

Enable

Address

Data

External
Data
SRAM
Chip
Read

Address

Data

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6 /RD
P1.7

/WR
TXD
RXD

/PSEN
/INT0
/INT1 A0..15
T0
T1 D0..7

8051
uC

Chip

Write

using external memories.
shown in this figure.) The program is
stored in non-volatile ROM memory, such as an EPROM (erasable and pro­
grammable read-only memory), and the data is stored in a volatile RAM. In this
configuration with external memory, the amount of useable I/O is limited by
the number of pins that are used for the address, data, and control lines. Only
Port 1 and part of Port 3 is available for user I/O in this case. In its simplest
configuration, only the processor’s internal memory is needed for the applica­
tion, so most of the pins are available for I/O. In that case, the microcontroller
is the only required chip, which is also the lowest cost configuration. There
are versions of this device that have internal program memory that can be
programmed with an inexpensive programmer connected to a PC.

Now that we’ve introduced the 8051 architecture, we need to get into the
“low level details” in order to really understand it. Up to this point we’ve had
a view from 50,000 feet, where all the landscaping looks perfectly manicured.

30 EMBEDDED CONTROLLER
Hardware Design

Now we need to get down to ground level where we can see all the bits of
trash and imperfections of reality. Every processor has its own idiosyncrasies,
and the 8051 is no exception. While it may seem quite odd at first, it does
have some very useful features

1 P1.0 (T2)
2 P1.1 (T2EX)
3 P1.2
4 P1.3
5 P1.4
6 P1.5
7 P1.6
8 P1.7
9 RST
10 P3.0 (RXD)
11 P3.1 (TXD)
12 P3.2 (/INT0)
13 P3.3 (/INT1)
14 P3.4 (T0)
15 P3.5 (T1)
16 P3.6 (/WR)
17 P3.7 (/RD)

(
20 Vss

80
52

Vcc 40
(AD0) P0.0 39
(AD0) P0.1 38
(AD0) P0.2 37
(AD0) P0.3 36
(AD0) P0.4 35
(AD0) P0.5 34
(AD0) P0.6 33
(AD0) P0.7 32

/EQ 31
ALE 30

/PSEN 29
(A15) P2.7 28
(A14) P2.6 27
(A13) P2.5 26
(A12) P2.4 25
(A11) P2.3 24

18 XTAL 2 (A10) P2.2 23
19 XTAL 1 A9) P2.1 22

(A8) P2.0 21

Port bit 0which make it fairly adept at +3 or 5V Power
Port bit 1 Port 0.0 (Address/Data bit 0)
Port bit 2 Port 0.1 (Address/Data bit 1)handling the sorts of things Port bit 3 Port 0.2 (Address/Data bit 2)
Port bit 4 Port 0.3 (Address/Data bit 3)

that are often required in an Port bit 5 Port 0.4 (Address/Data bit 4)
Port bit 6 Port 0.5 (Address/Data bit 5)
Port bit 7embedded application. Having Port 0.6 (Address/Data bit 6)

Reset Input Port 0.7 (Address/Data bit 7)
Port 3.0 (Receive Data) External Access Enablesaid that, let’s get down to Port 3.1 (Transmit Data) Address Latch Enable

Port 3.2 (Interrupt 0) Program Store Enable
looking at the innards of the Port 3.3 (Interrupt 1) P2.7 (Address bit 15)

Port 3.4 (Timer 0 In) P2.6 (Address bit 14)

processor. Figure 2-5 shows Port 3.5 (Timer 1 In) P2.5 (Address bit 13)
Port 3.6 (Data Write) P2.4 (Address bit 12)
Port 3.7 (Data Read) P2.3 (Address bit 11)a top view of the processor Crystal Pin 2 P2.2 (Address bit 10)

Crystal Pin 1 P2.1 (Address bit 9)
with pin numbers, starting with Ground P2.0 (Address bit 8)

pin 1 in the upper left corner. Figure 2-5: Top view of 8052 40-pin DIP package.

Figure 2-5 shows the pin numbers, names and functional description of the
pin functions for the 8052 CPU in a dual in-line plastic (DIP) package. The
80x1 and 80x2 pin definitions are identical, except for the fact that the 80x1
does not have Timer 2, so those pins are different on the 80x1 parts.

8051 Memory Organization

In order to understand the processor, it is necessary to see how the various
memory spaces are organized. The memory organization of the 8051 family
of processors may seem complex at first; however, it as not as random as it
might seem. There are separate memories for program storage, internal
memory and registers, internal I/O functions, and external data memory. The
program and external data memories are relatively simple. They each hold up
to 64 kilobytes of instructions and data respectively. Program instructions are
always fetched from program memory, and are indicated by the CPU activating
the /PSEN pin. External data is transferred when the CPU executes a MOVX
(MOV eXternal memory) instruction, and the CPU indicates this by activating
the /RD or /WR line. The 8051 family chips only have three types of external
memory cycles:

• Program read when /PSEN goes low

• External data read when /RD goes low

• External data write when/WR goes low

31 CHAPTER TWO
Microcontroller Concepts

This makes interfacing other bus-oriented devices to the processor relatively easy.
(Some general purpose or PC CPUs have many different types of bus cycles.)

The internal data address space of the 8051 family is not quite as simple as the
external memories. It includes four banks of eight registers, memory that can
be accessed one byte or one bit at a time, a stack, and the special function registers
(SFRs) which hold the data and control information for the serial port, timers,
and other I/O. This internal memory address space can be accessed in several
different ways. The internal data space of the CPU can be rather confusing at
first, but it is one of the characteristics of the 8051 family, which allows so
much to be done with such limited resources.

The 8051 CPU manipulates operands in three memory address spaces:

•	 64 kilobyte program memory (external program memory on the 8031)
which is enabled when the processor is fetching an instruction to be
executed and signaled by activating the CPU’s /PSEN control line. The
MOVC instruction also activates /PSEN to enable reading the code
memory into the accumulator for accessing lookup tables and other
unchanging data stored in the program memory space.

•	 64 kilobyte external data memory which is enabled when the processor
reads or writes data from the external data memory and signaled by acti­
vating the /RD and /WR control lines. This occurs only when a MOVX
instruction is used to read or write from external memory.

•	 Internal data RAM (128 bytes for the ‘31, 256 bytes for the ‘32) and
special function registers (SFR). Four register banks (each bank has eight
registers), 128 individually addressable memory bits, and the stack all
reside in the internal data RAM. The stack depth is limited only by the
available internal data RAM. Its location is determined by the 8-bit stack
pointer. The 128	

Program External
(Code) Memory Data Memorybyte special

function register
address spaces
are shown in
Figure 2-6.

FF

80

7F
Figure 2-6: 8031

memory address spaces. 00

External
Program

/PSEN
Pulses
Low

Internal
Program

External
Data

/RD
or

/WR
Pulse
Low

Address Spaces
FFFF

2000
1FFF

0000

FFFF

0000

Internal
Data

Special
Function
Registers

FF

80

Memory

Memory

Memory

8052 Memory

Memory

32 EMBEDDED CONTROLLER
Hardware Design

The lower 128 byte half of the 256 byte internal data memory address space
contains four blocks of eight CPU registers, R0-7. In the 8032 CPU, the upper
128 bytes of the internal data memory address space are shared between data
memory and the SFRs, depending upon the address mode. The upper 128
bytes of data memory must be accessed using the indirect register 0/1 (@R0 or
@R1 operands) or stack accesses, and all other references to addresses of 128
or higher will access the SFRs. All registers except the program counter and
the four 8-register banks reside in the special function register address space.
These memory mapped registers include arithmetic registers, pointers, I/O
ports, and registers for the interrupt system, timers and serial channel. There
are 128 bit locations in the SFR address space that are addressable as bits. The
8031 contains 128 bytes of internal data RAM and 20 special function regis­
ters (SFRs), while most other processor family variants include an additional
128 bytes of internal data memory overlapped with the SFR addresses.

8051 CPU Hardware

The 8051 is classified as an 8-bit machine, since the internal ROM, RAM,
special function registers, arithmetic/logic unit and external data bus are each
eight bits wide. The 8031 is identical to the 8051, except that it does not have
any internal program ROM. The 8051 performs operations on bit, nibble, byte
and double-byte data types. It excels at bit handling since data transfer, logic
and conditional branch operations can be performed directly on the bit address­
able SFRs.

This section describes the hardware architecture of the 805l CPU. A detailed
8051 functional block diagram is displayed in Figure 2-7.

Internal

Control
Unit

Program
Counter

Arithmetic
Logic
Unit

ACC
B
PSW
I/O Ports

Dater Pointer
Stack Pointer

Registers

Data
Instruction

Register

Internal
Program

ROM

Port 3

Port 2

Port 1

Port 0

Timers

G.P. Memory

Memory

Memory

Figure 2-7: 8051 CPU block diagram.

33 CHAPTER TWO
Microcontroller Concepts

Control Unit

Each program instruction is decoded by the control unit, which is also called
the instruction decoder. This unit generates the internal signals that control the
functions of all the other units within the CPU section. All instructions are
fetched from the program memory ONLY. Instructions can be fetched from
either the internal program memory (for those devices which possess one)
or from external program memory. Instruction fetch operations are indicated
when the CPU activates (lowers) the /PSEN line (NOT program strobe enable).
A program memory fetch cycle lasts as long as /PSEN stays low. External
program memory must only drive the data bus with the addressed instruction
while /PSEN is low.

Program Counter

This is the pointer to the next instruction to be executed. The 16-bit program
counter (PC) controls the sequence in which the instructions stored in pro­
gram memory are executed.

Instruction Register

This is the register that contains the instruction that is currently being executed.

Internal Program Memory

The 8051 family has 16 address lines, and can directly address 216 = 64 kilobytes
of program memory. The original 8051 has 4 kilobytes of program memory
resident on-chip, the 8031 has no on-chip program memory, and the 8052 has
8 kilobytes of program memory. Other variants of the family are available with
1 to 64 kilobytes of various types of non-volatile program memory built in.
The 64 kilobyte program memory address space is composed of a combina­
tion of internal and external program memory (external program memory
only on the 8031 and 8032). When external program memory is accessed,
and the processor is fetching an instruction to be executed, the external pro­
gram read cycle is signaled by activating the CPU’s /PSEN control line. The
MOVC instruction also activates /PSEN to enable reading the code memory

34 EMBEDDED CONTROLLER
Hardware Design

into the accumulator for accessing lookup tables Program
(Code)

and other unchanging data stored in the program

External
Program

/PSEN
Pulses
Low

Internal
Program

MOVC a

Memory

Memory

Memory
FFFF

memory space. Figure 2-8 shows a program
memory map. Figure 2-8:

Program

The processor can fetch instructions from internal memory map.

or external program memory. There is a control
2000input pin, /EA (external access), which forces all
1FFF

instructions to be fetched from the external
program memory when the pin is pulled low.
If the /EA pin is pulled high, then the processor Reset Vector: 0000

will fetch instructions from any available internal
program memory. When the processor first powers up and receives a reset
signal, it begins by executing the instruction at location 0000 in program
memory. When the processor fetches instructions from external program
memory, it puts the instruction address out on the address bus, pulses the
/PSEN (program strobe enable) pin low to enable the external program
memory to place the instruction on the data bus to the processor.

The generic part numbering scheme is as follows:

• 8xxx: NMOS logic

• 8xCxx: CMOS logic

• 803x: No internal program memory

• 805x: Factory programmed internal ROM program memory

• 87xx: Internal user programmable EPROM program memory

• 89xx: Internal flash EPROM program memory

• 8xx1: 4 kilobyte internal program memory, 128 byte internal RAM

• 8xx2: 8 kilobyte internal program memory, 256 byte internal RAM

For example, the 80C32 used as the standard processor in the SDK board is a
CMOS part with no internal program ROM, and 256 bytes of internal data RAM.

Internal Data Memory

Figure 2-9 shows the data memory spaces in the 8051. The internal data RAM
provides a convenient 128 byte scratch pad memory that includes the register

35 CHAPTER TWO
Microcontroller Concepts

banks, SFRs, and general-purpose data storage. The programmer (or com­
piler) may also use this scratch pad memory for storing intermediate calcula­
tions on a temporary basis. The 8031 contains a 128 byte internal data RAM
(addresses 0-7Fh, which includes registers R0-R7 in each of four banks), in
addition to the memory-mapped special function register (locations 80-FFh).
The 8032 has an additional 128 bytes of internal data RAM also at locations
80-FFh, which can only be accessed by using indirect register addressing
(@R0, @R1) and the stack. The lower 128 byte half of the 256 byte internal
data memory address space contains four blocks of eight CPU registers, R0-7.
In the 80x2 CPU, the upper 128 bytes of the internal data memory address
space are shared between data memory and the SFRs, depending upon the
address mode. The upper 128 bytes of data memory must be accessed using
the indirect register 0/1 (@R0 or @R1 operands) or stack accesses, and all
other references to addresses of 128 or higher will access the SFRs. All regis­
ters, except the program counter and the four 8-register banks, reside in the
special function register address space. These memory mapped registers in­
clude arithmetic registers, pointers, I/O ports, and registers for the interrupt
system, timers and serial channel. There are 128 bit locations in the SFR
address space that are address- External

Dataable as bits. The 8031 contains Memory

128 bytes of internal data
RAM and 20 special function
registers (SFRs), while most
other processor family variants
include an additional 128 bytes
of internal data memory over­
lapped with the SFR addresses. FF

80
7F

00
Data Memory

External
Data

/RD
or

/WR
Pulse
Low

See separate
address map

FFFF

0000

Internal
Data

Special
Function
Registers

FF

80

See below

Some SFRs
are also bit
addressable

MOVX a

address spaces in the 8051.

Memory

Memory

MOV 80-FF MOV @R0/1

MOV 00-7F

Figure 2-9: Data memory

The 8051 family devices have two data memories, internal and external. With
16 address bits, there is a maximum of 64 kilobytes of external data memory,
which is useful for storing large blocks of variable information that will not
fit in the internal data RAM. It is enabled when the processor reads or writes
data from the external data memory, signaled by activating the /RD and /WR
control lines. This occurs only when a MOVX instruction is used to read or
write from external memory.

36 EMBEDDED CONTROLLER
Hardware Design

The internal data address space has two FF

different parts, as shown in Figure 2-10.
One part contains the general-purpose 80

registers and general-purpose data storage 7F

30
RAM, and the other part contains all the 2F

special registers and I/O devices, such as 20

the parallel and serial ports, and timers. 1F

These registers are called special func­ 18
tion registers. There is a maximum of 256 17

bytes of internal RAM (128 bytes for the
10

’31/’51, 256 bytes for the ’32/’52) and 0F
special function registers (SFR). Four
register banks (each bank has eight 08

07
registers), 128 individually addressable 06

05memory bits, and the stack all reside in
04

the internal data RAM. The stack depth 03

is limited only by the available internal 02
01

data RAM. The 8-bit stack pointer deter- 00

Shared:
SFRS and
Indirect

@R0 OR @R1

General
Purpose

Bit
Addressable

R7
• • •

R0

R7
• • •

R0

R7
• • •

R0

Ba
nk

 3
Ba

nk
 2

Ba
nk

 1

R6
R5
R4
R3
R2 Ba

nk
 0

 Current Bank
Number is
Selected by
RS1, RS0 Bits
in PSW

R7 MOV R7

R1 MOV R1
R0 MOV R0

(PSW.R, PSW.R

mines the stack’s location.	 Figure 2-10: The internal data memory.

The internal data RAM provides a convenient 128 byte scratch pad memory
which includes the register banks, SFRs, and general purpose data storage.

RAM locations 00-7F hex

•	 Register banks: There are four register banks within the internal data
RAM. Each register bank contains registers R7-R0.

•	 128 addressable RAM bits: In the 8031, there are 128 addressable software
flags in the internal data RAM. They are located in the 16 byte locations
starting at byte address 20h and ending with byte location 2Fh of the RAM
address space.

Special Function Register (SFR) locations 80-FF hex

•	 General registers A, B, and other registers are mapped here.

•	 Parallel I/O ports: The 8031 has four 8-bit ports.

37 CHAPTER TWO
Microcontroller Concepts

•	 Serial I/O port: The serial I/O port built into the 8031.

•	 Timer/counters: There are counters that can count external events or
count processor clock cycles to operate as timers. Many of the SFRs are
also bit addressable.

Bit Addressable Memory

Figure 2-11 shows the organization of bit addressable space in the internal
data memory. The bit address space has a total of 256 possible bit addresses.
The first 128 bits, 00 to 7F hex, are used to access individual bits of the inter­
nal memory from location 20 to 2F hex. The second 128 bits, from 80 to FF
hex, allow selected bits in the special function registers to be accessed at the
bit level. Not all SFRs are bit addressable, and not all bit addresses are used in
most processors.

Internal Byte

Data Addr 7

Bit
Addressable

Memory 2F
2E
2D7F
2C
2B

30 2A
292F
28
27
26
2520
24

1F 23
21
22
2000

Bit Number
6 5 4 3 2 1 0

7F 7E 7D 7C 7B 7A 79 78
77 76 75 74 73 72 71 70
6F 6E 6D 6C 6B 6A 69 68
67 66 65 64 63 62 61 60
5F 5E 5D 5C 5B 5A 59 58
57 56 55 54 53 52 51 50
4F 4E 4D 4C 4B 4A 49 48
47 46 45 44 43 42 41 40
3F 3E 3D 3C 3B 3A 39 38
37 36 35 34 33 32 31 30
2F 2E 2D 2C 2B 2A 29 28
27 26 25 24 23 22 21 20
1F 1E 1D 1C 1B 1A 19 18
17 16 15 14 13 12 11 10
0F 0E 0D 0C 0B 0A 09 08
07 06 05 04 03 02 01 00

MOV C<->bit# CPL bit#
Figure 2-11: Bit addressable CLR bit# JB bit#, addr
space in the internal data memory. SETB bit# JNB bit#, addr

Bit addressable memory allows the manipulation and test of individual bits,
which is a very common operation in embedded systems. Almost every appli­
cation requires that some output bits be used to control an on/off device, such
as an indicator or relay. Likewise input bits are used to sense the status of
some external device, such as a switch or sensor. The bit addressable address
space allows the programmer to operate on information at the bit level just as
easily as at the byte level. This is contrasted by most other processors, in which
the programmer must write multiple instructions to select the appropriate bit
in a byte before processing or testing it.

38 EMBEDDED CONTROLLER
Hardware Design

Internal memory locations from 20 to 2F hex, are accessible either one byte
at a time, or one bit at a time. That makes it easy to convert inherently serial
information to parallel and vice versa, and to perform Boolean logic functions.
This bit-level processing is one of the most unique and powerful features of
the 8051 family architecture, and is one of the features that differentiate it
from other microcontrollers.

Register Banks

The four register banks within the internal data RAM each contain eight
registers named R0-R7.

128 Addressable Bits

There are 128 addressable software flags in the internal data RAM. They are
located in the 16 byte locations starting at byte address 20h and ending with
byte location 2Fh of the RAM address space.

I/O Ports

There are four 8-bit ports. When using external program or data memory,
only Port 1 (P1) is available for general purpose I/O. External memory uses
Port 0 (P0) for the multiplexed data bus and address bits 0-7, and Port 2 (P2)
for address bits 8-15, while Port 3 (P3) contains special control signals, such
as the read and write strobe pins. In addition to the basic parallel I/O bits on
the four ports, some of the port bits have alternate functions. The alternate
functions include the serial I/O port signals, timer and interrupt inputs.

Timer/Counter

The 8031 has two timer/counters and the 8032 has three.

Serial I/O

The serial I/O port that is built into the 8031 can be used to transmit and
receive asynchronous (un-clocked) serial data, as is used on a PC’s serial port.
It can also be used for synchronous (clocked) serial data transfers.

39 CHAPTER TWO
Microcontroller Concepts

Reset Circuitry

The reset input pin should be connected to an external resistor and capacitor,
so that the processor will be properly initialized upon initial application of
power. There is a capacitor between the reset pin and the power supply, and
a resistor from the reset pin to ground. Vcc
When power is first applied, the capaci­

tor has no voltage across it, forcing the

SW

processor to reset. After resistor R1 +
 8051C
charges the capacitor C, the reset signal

R2
goes low (inactive), and the processor Reset

(active high)begins executing the program beginning D R1
at location 0 in program memory. The

recommended reset circuit is shown in

Figure 2-12: Recommended
Figure 2-12.
reset circuit for the 8051.

When power is first applied, capacitor C has zero voltage across it, and reset is
held high until the current that flows through R1 charges C. Once the capacitor
is charged, the reset pin is at zero volts and inactive. The diode allows the
capacitor to discharge when Vcc goes to zero, even for a short period. If there
was no diode, and there was a brief power loss, the CPU state would be indeter­
minate, and would not be reset. Optionally, the processor can be reset by closing
switch SW through a series resistor R2, which limits the current through the
switch. The current flowing through the switch discharges the capacitor. If
resistor R2 was not present, very high currents could flow through the switch.
These high currents that flow very briefly while the capacitor is shorted and
can cause the switch contacts to fail or even weld the contacts together.

The R1*C time constant must be long enough to guarantee that the processor
will be completely reset to a known state upon power up. The delay must allow
the oscillator to start up and stabilize, as well as the time it takes the processor
to reset after the oscillator is stable. Different processors require different
numbers of clock cycles to reset themselves, and the oscillator start-up time
can vary widely depending on the frequency reference, voltage, capacitive loads,
and other factors. If the processor reset is not long enough, the processor may
behave in unpredictable ways, and it may not be apparent that the problem is
due to an incomplete reset operation. In most cases, it’s better to have a relatively
long reset time constant, on the order of hundreds of milliseconds, to be sure
that the processor has been completely reset. External peripherals can also

40 EMBEDDED CONTROLLER
Hardware Design

exhibit this problem. During the initial development of the SDK, we experienced
occasional problems with the external serial port chip used on the board. The
problem turned out to be related to the length of the reset pulse and the period
of time after the reset when the chip must be left alone to pull itself together!
This sort of problem can be very difficult to trace down, since it is difficult if
not impossible to determine when a chip has not been completely reset.

The 8051 is unique in that its reset signal is active high. Other processors use
active low reset signals, so the reset circuit must be adjusted to perform the
equivalent function with the reset pulse going low at power up and when the
capacitor is charged, the reset goes high. The circuit configuration except R
and C1 are swapped, as are D1 and the SW/R2 pair.

The circuit in Figure 2-12 is good enough for most applications. However, it is
not foolproof. Even with the above precautions, it is possible that the processor
state can be jumbled by power transients that are too short to cause a reset.
When a processor is used in a critical or long term unattended application,
that probably won’t be good enough to meet the need for reliable operation.
To deal with this, processor supervisory chips are available to monitor the
power supply voltage for out of tolerance fluctuations and automatically reset
the processor when the power supply falls out of tolerance. Some of these
supervisory chips also have a special “watchdog” timer circuit that expects to be
“fed” by a pulse that resets the watchdog counter periodically by a correctly
functioning program running on the processor. If the watchdog timer is not
“fed” with a pulse periodically, the counter will overflow and it will “bark” by
pulling the reset pin active. That way if the processor goes off in the weeds,
due to a hardware glitch or a program bug, the CPU will be reset. This is a
simple method of obtaining tolerance to fault conditions, but it also requires
careful design to avoid undesired reset conditions. It is also the designer’s
responsibility to assure that the processor can’t get stuck in a loop while feed­
ing the watchdog timer.

When designing a microcontroller that must operate in high noise environ­
ments, or where correct operation is safety critical, special care must be taken
to ensure that electromagnetic noise does not cause problems. This noise can
come from other parts of the system and environmental conditions such as
electromagnetic fields from other devices such as wireless communication
devices. With the rapid increase in the number of electronic and wireless devices,
this problem is becoming more and more serious. The field of electromagnetic

41 CHAPTER TWO
Microcontroller Concepts

compatibility (EMC) covers this noise, as well as others such as electrostatic
discharge (ESD). A good summary of EMC concepts as they relate to micro-
controllers can be found in the Intel application note AP-125, “Designing
Microcontroller Systems for Electrically Noisy Environments.”

Oscillator and Timing Circuitry

Timing generation is completely self-contained on the 8051, except for the
frequency reference (which can be a crystal or external clock source). The
on-board oscillator is a parallel anti-resonant circuit with a frequency range
of 1.2 MHz to 12 MHz for the original 8051. There is a divide-by-12 internal
clock counter that gives the standard 8051 an instruction cycle of 1 µS with
a 12 MHz crystal. Higher speed versions of the processor are also available,
which use fewer than twelve clocks per instruction cycle. The Dallas 80C320
uses only four clock cycles for most instruction cycles, so it is three times
faster than the original CPU using the same clock frequency. The XTAL2
pin is the output of a high-gain amplifier while XTAL1 is its input. A crystal
connected between XTAL1 and XTAL2 provides the feedback and phase
shift required for oscillation. For stability and
consistent oscillator start-up, two capacitors 8051
in the range of 10 to 20 picofarads should be XTAL2

connected from the XTAL pins to ground. If
XTAL1 is being driven by an external frequency
source, XTAL2 should not be connected. An C XTAL1 C

external clock can also be applied to XTAL1
to allow the use of a separate clock frequency
source, such as an oscillator module. Figure Figure 2-13: Standard
2-13 shows a standard oscillator configuration. oscillator configuration.

The oscillator circuit consists of a crystal connected between the XTAL1 and
XTAL 2 pins of the processor, along with two capacitors, one from each XTAL
pin to ground to improve stability and start-up characteristics of the oscillator.
The internal amplifier and quartz crystal form a series resonant oscillator which
operates at the at the crystal’s resonance frequency. The amplifier in the original
8051 was an inverting amplifier, but other variants and other processor families
make use of non-inverting amplifiers in some cases. All of the processor’s
timing is derived from this oscillator. For the standard 8051 compatible parts,

42 EMBEDDED CONTROLLER
Hardware Design

each instruction cycle requires a multiple of 12 clock cycles. For the Dallas
high-speed CPU versions, four clock cycles are used for most instruction cycles.

In most 8051 designs, the capacitors connected to the crystal should be in
the 10 to 50 picofarads range, with 30 picofarads being a typical value. The
crystal should be an “AT cut” series resonant device. The “AT” designation
refers to the way the quartz crystal is cut from the blank with an orientation
relative to the crystal lattice that reduces the crystal’s frequency dependence on
temperature changes. The crystal is manufactured so that it is series resonant
at the specified frequency. A given crystal will resonate in a series or parallel
mode. A parallel resonant crystal will still operate in the circuit, but it will
operate at a slightly different frequency. Actual operating frequency depends
on the load capacitance, and is subject to temperature, and will drift over time.

Selection of the capacitors is a trade-off between oscillator start-up time and
stability. Specification of a crystal depends upon the specific design require­
ments and the processor being used. Even parts with the same number may
have different requirements, especially for parts from different manufacturers.

There’s much more information available from the crystal and processor
manufacturers on the proper design and operation of crystal oscillators.
Other frequency references, such as ceramic resonators and even simple R-C
circuits can be used for many processors. Some microcontrollers even include
on-chip oscillators that can be calibrated to operate at a specific frequency,
albeit with less accuracy and greater drift. Application note AP-155, “Oscilla­
tors for Microcontrollers” from Intel Corporation, is a very useful reference
and describes the characteristics of both the crystal and ceramic resonator’s
operation as well as the processor’s oscillator amplifier.

The 8051 Microcontroller Instruction Set Summary

The following description of the instruction set is not a complete list, but serves
to introduce the general character of the standard 8051 instructions. The instruc­
tion set utilized by the 8051 microcontroller consists of a total of 111 instructions,
which may be divided up into several different categories. These are:

1. Arithmetic (24)

2. Logical (25)

43 CHAPTER TWO
Microcontroller Concepts

3. Data transfer (28)

4. Bit (Boolean) variable manipulation (17)

5. Program branching and control (17)

Each of these categories is comprised of instructions that utilize mnemonics as
shown below:

Arithmetic

ADD, ADDC, SUBB, INC, DEC, MUL, DIV, DA

Logical
ANL, ORL, XRL, CLR, CPL, RL, RLC, RR, RRC, SWAP

Data Transfer
MOV, MOVX, MOVC, PUSH, POP, XCH, XCHD

Bit (Boolean) Variable Manipulation

CLR, SETB, CPL, ANL, ORL, MOV, JC, JNC, JB, JNB, JBC

Program Branching and Control

ACALL, LCALL, RET, RETI, AJMP, LJMP, SJMP, JMP, JZ, JNZ, CJNE, DJNZ, NOP

Direct and Register Addressing

While the number of mnemonics is clearly smaller in number than the total of
111 instructions, a given mnemonic may be used in several different ways to
make up a valid 8051 instruction. These different ways of forming instructions
are classified by the types of arguments that a given mnemonic takes. A mnemonic
can refer to data in a number of ways. One can refer to data located in particular
address in the data memory space either by specifying its address directly, or
indirectly by using a data pointer register. In this case, the data pointer register
contains the address of the memory location we seek. The 8051 looks in the
data pointer register, and then retrieves the information located in the location
referred to (or pointed to) by the data pointer. Additionally, the 8051 has 32
bytes of internal memory divided up into four register banks of eight bytes
each. These register banks may be referred to in an 8051 instruction by either
their direct address (which ranges between 00h and 1Fh), or by their register

44 EMBEDDED CONTROLLER
Hardware Design

name, which is denoted by R0 through R7. When these memory locations are
addressed by their register name, it is important to remember which register
bank is currently in use. These register banks, numbered 0 through 3, are
selected through two bits located in a special register called the program status
word (PSW). The PSW contains a number of very important bits, which are
used to indicate the current status of the processor. Note that because the
registers R0 through R7 are located in the data memory space, they may be
addressed either by the register name or by their direct address location.
Consider the instruction:

MOV A,R3

This instruction takes the contents of register R3 and moves it (actually, the
data is copied) to a register denoted by the letter “A”, called the accumulator.
The accumulator is the “working” register of the 8051, and is the register that is
used in most all arithmetic and logical operations performed by the processor.

Assuming we are using register bank 0, the following instruction is identical
to the instruction just shown:

MOV A,03h

Since register R3 is at internal RAM location 03h, the above instruction takes
the data stored in RAM location 03h and moves it to the accumulator.

What is the difference between these two forms of saying the same thing? The
first instruction is called register addressing, while the second instruction is
called direct addressing. The reason for the difference in nomenclature is obvi­
ous, and while it may seem a bit pointless to dwell on the difference between
these two modes, there is a significant difference in the way the 8051 deals
with each type of addressing.

Looking in the 80C51-Based 8-Bit Microcontrollers Data Book (publication
number IC-20) published by Philips, the instruction MOV A,R3 takes up only
one byte of program memory space, while the instruction MOV A,03h requires
two bytes of program memory space. The reason the register mode instruction
requires less program memory to store is that a reference to a register requires
three bits to represent its address, and a reference to an arbitrary location in
internal data memory requires 8 bits. Once a particular register bank is selected
by setting the proper bits in the PSW, any register in that bank may be com­
pletely determined by only 3 bits (3 bits are required to distinguish eight

45 CHAPTER TWO
Microcontroller Concepts

possible locations). If we use direct mode to perform the very same operation,
we now require 7 bits to completely determine the exact location out of 128
possible locations—thus, direct addressing instructions generally occupy
more program memory space than register addressing instructions.

There are two other memory locations in the 8051 that may be addressed
through register mode. These are the accumulator, which we have already
seen is denoted by the letter “A,” and the data pointer, which is actually two
registers. The letters DPTR denotes the data pointer, and is a 16-bit quantity
used for addressing locations in data memory external to the microcontroller
itself. Since the DPTR is a 16-bit quantity, a total of 64 kilobytes of data may
be addressed. This is, of course, the maximum data that may be accessed at
any one time by the 8051.

The following instructions are examples of data movement instructions that
utilize direct addressing:

MOV 24h,A ;move accumulator contents to internal RAM

 location 24h

MOV 7Ch,0Fh ;move location 0Fh contents to internal RAM

 location 7Ch

PUSH 22h ;PUSH location 22h contents onto the stack

POP 4Eh ;POP the top of the stack into location 4Eh

The following instructions are examples of data movement instructions,
which utilize register addressing:

MOV R0,49h ;move location 49h to register R0

MOV R2,A ;move accumulator contents to register R2

Note that in all instructions, the order of the memory locations in the instruc­
tion is always destination, source. The destination address appears first, followed
by the source address.

The instructions PUSH and POP perform operations on a portion of memory
called the stack. While not a separate memory space, the stack is located in
the internal data memory portion of the 8051/52, and is structured as a LIFO
(last in, first out) data structure.

46 EMBEDDED CONTROLLER
Hardware Design

The instruction:

PUSH 49h

takes the data stored in internal RAM location 49h and puts it onto the top
(that is, the first available location) of the stack. Exactly where the top of the
stack is situated is determined by the value contained in the stack pointer
(SP) special function register. When the processor executes a PUSH instruc­
tion like the one above, it first increments the SP register by 1, and then cop­
ies the internal RAM register specified in the PUSH instruction to the address
pointed to by the SP register. In other words, the value contained by the SP
register is a pointer to the memory location one byte below the top of the stack.

The POP instruction takes the data at the top of the stack and copies it to the
internal RAM location specified in the POP instruction. After copying the
data, the SP is decremented by 1. The SP register in the 8051/52 is therefore a
pre-increment, post-decrement register. In the 8051, which contains 128 bytes
of internal data RAM, the maximum legal value that the SP register may con­
tain is 07Fh. The 8052 has an additional 128 bytes of internal RAM, separate
from the special function registers. This section of RAM is accessible through
the stack, and so the 8052 permits a maximum value of the SP register of 0FFh.

The SP register can be set by the programmer to any value that is convenient
for the particular application. When the processor comes out of RESET, the
SP register is loaded with 07h, thus placing the top of the stack at internal
RAM location 08h. This is just above register bank 0. The stack always grows
upwards through internal RAM. Care must be taken that the stack does not
collide with other registers in internal RAM that have other uses. Additionally,
if the SP register reaches its maximum value, 0FFh, and then overflows, the
stack will continue to grow through the Bank 0 registers. As no stack overflow
or underflow features are present on the 8051, this becomes the responsibility
of the programmer.

Indirect Addressing

In many applications, it is inconvenient or impossible to always refer to data
directly or as a register. When large amounts of data are being manipulated,
either in internal or external data memory, very often it is required to address
such data through the use of a data pointer. Use of a data pointer to address

47 CHAPTER TWO
Microcontroller Concepts

data memory is known as indirect addressing. The 8051 has four different
methods by which data may be addressed indirectly:

1. The indirect registers R0 and R1, located in each of the 4 register banks

2. The data pointer (DPTR) and the accumulator

3. The program counter and the accumulator

4. The XCHD instruction

Indirect addressing of data is used frequently. Many embedded applications
require calculation of one form or another, and frequently the most efficient
means of doing this is through the use of a look-up table. As an example, an
8051 microcontroller such as the 80C552 has an eight channel, 10-bit analog
to digital converter (ADC). The ADC takes an analog voltage as its input, and
converts it to a 10-bit binary number between 000h and 3FFh. If this ADC is
used, for example, to convert the analog output voltage of a pressure trans­
ducer to a digital value, it is necessary to relate each of the 1024 possible
counts of the ADC to a pressure value. If the computer in use is very fast, or
has a great deal of floating point mathematical ability, it would be possible to
directly calculate the pressure value from the ADC count—one would need
the characteristics of the transducer to accomplish this. However, an 8-bit
embedded controller such as the 8051 does not have such capability, or at
least the ability to do complex mathematical calculations quickly. In this case,
it is far more efficient to simply generate the 1024 numbers that correspond to
the pressure output of the transducer and store these numbers in a table. The
processor then takes the output of the ADC and uses this 10-bit number as an
offset into the table stored in RAM. This offset, when added to the base address
of the lookup table (the base address is the address of the first record in the
table), constitutes the physical address of the data record that corresponds to
the actual pressure sensed by the transducer. Since this lookup table could be
located literally anywhere in either the code or data memory spaces, and since
each record could be more than a single byte, it is in general not possible to
store the actual location of each entry in the table. Rather, the ADC output is
used to indirectly address the data through the use of a data pointer.

Registers R0 and R1 in each of the four register banks may be used to indi­
rectly access any of the internal data memory space of the 8051. To illustrate
by example, consider the instruction:

MOV A,@R1

48 EMBEDDED CONTROLLER
Hardware Design

Here, the “@” symbol is used to denote indirection, similar to the asterisk “*”
in C. This instruction takes the data located in the location pointed to by
register R1 and copies it to the accumulator. Note that the value copied to the
accumulator is not the contents of R1, but the value in the memory location
equal to the contents of R1. This is why register R0 is said to be a data pointer,
pointing to another internal RAM location. Notice that only data located in
the internal data memory space of the 8051 may be accessed through @r0 or
@R1 instructions. As these registers are only eight bits wide, a total of 256 bytes
may be specified. The 8051 microcontroller contains a total of 128 bytes of inter­
nal RAM located between addresses 00h and 7Fh, while the 8052 contains an
additional 128 bytes of internal RAM between 80h and 0FFh. These upper
128 bytes of internal RAM can only be accessed by indirect addressing. It is
important to distinguish these upper 128 bytes of internal RAM in the 8052
microcontroller from the special function registers. The SFRs are not part of
the upper 128 bytes of internal RAM—they are a separate memory space.

Very often, an embedded system will require a much larger amount of RAM
than is present on an 8051 or 8052 microcontroller. When this is the case,
one generally uses external RAM chips that are interfaced to the processor
over the address, data, and control bus structure. Since the address bus of the
8051/52 microcontroller family is 16 bits wide, a total of 64 kilobytes of either
program memory or data memory may be accessed. Restricting our attention
to the data memory space and RAM for the moment, we need some way of
accessing the (at most) 64 kilobytes of RAM external to the microcontroller.
The MOVX instruction (X denotes “external”) is used to move data into and
out of RAM located external to the microcontroller. The only way the 8051/52
microcontroller can access external RAM is through indirect addressing.

The MOVX instruction can be used in two different ways. If the external RAM
space is small (small meaning 256 bytes or less in this case), it may be accessed
with an 8-bit address. The R0 and R1 registers may be used in this manner just as
they are used for indirect addressing of internal RAM. Consider the instruction:

MOVX @R0,A

This instruction takes the byte in the accumulator and copies it to the loca­
tion at the address in external RAM pointed to by R0.

The instruction

MOVX @R1,A

49 CHAPTER TWO
Microcontroller Concepts

performs the opposite operation. It takes the value held in the external RAM
location pointed to by R1 and copies it to the accumulator. There is an impor­
tant difference between this type of external data addressing and internal data
addressing—whenever data is being read from or written to external RAM,
either the source or the destination register must be the accumulator.

What if our external RAM array contains more than 256 bytes? Recall that
the 8051/52 family of microcontrollers have a 16-bit address bus, permitting
up to 64 kilobytes of external program and/or data memory. The data pointer
(DPTR) is used to store a 16-bit address for indirect addressing of external
RAM. DPTR is loaded with the address of interest, and the instruction

MOVX A,@DPTR

copies the data at the external RAM location pointed to by the 16-bit address
pointer, called DPTR into the accumulator. The instruction

MOVX @DPTR,A

performs the opposite operation. The contents of the accumulator A is copied
to external RAM at the location pointed to by DPTR. Again it is important to
notice that either the source or the destination register in the instruction must
be the accumulator.

Sometimes it is necessary to store information other than actual program
instructions in a nonvolatile memory. Critical configuration data, lookup
tables, or serial number information for unit identification oftentimes must
be stored and available at system power-up without having to be regenerated
by the system itself. While there are external nonvolatile memory technolo­
gies available (EEPROM and flash, for example), it is possible to use the
program memory space of the 8051/52 for this same purpose. While it is not
possible to write to the program memory space during normal operation (that
could have potentially disastrous results!), it is possible to read data from it.
The MOVC instruction (“C” denotes “Code”) copies a byte in the program
memory space to the accumulator. In order to accomplish this, the instruction
requires the use of a base address and an offset. It is best to illustrate this with
some examples. The two allowable forms of the MOVC instruction are:

MOVC A,@A+DPTR

MOVC A,@A+PC

50 EMBEDDED CONTROLLER
Hardware Design

In each of these instructions, the contents of the accumulator and either the
DPTR or the PC (the program counter register) are added together, generating
a 16-bit address. The contents of the address in the program memory space
pointed to by this 16-bit sum is copied to the accumulator. In this way, either
the PC or the DPTR can be used as a base address into a data table in the
program memory space. The accumulator then becomes an offset into the
data table, with a maximum offset value of 256.

The last method of indirect addressing available in the 8051 is the XCHD
(exchange digit) instruction. The XCHD instruction is frequently used when
BCD (binary coded decimal) arithmetic is being performed, or when a BCD
lookup table is stored in internal RAM (a common use of a BCD lookup table
would be for driving a 7-segment LED display). The XCHD instruction has
the following syntax:

XCHD A,@R0

XCHD A,@R1

This instruction exchanges the low nibble (that is, the low 4 bits) of the
accumulator with the low nibble of the internal RAM location pointed to by
either the R0 or R1 register. Recalling that BCD uses 4 bits to represent the
decimal numbers 0 through 9, this instruction offers a quick way to indirectly
address a BCD (or any other 4-bit coding scheme) lookup table in internal
RAM. To illustrate this with an example: suppose the accumulator contains
A6h, register R1 contains 43h, and internal RAM location 43h contains 0BBh.

The instruction:

XCHD A,@R1

Will result in the accumulator containing 0ABh, and internal RAM location
43h containing 0B6h.

Immediate Addressing

Sometimes it is necessary to place a fixed constant into a memory location.

This may be performed through the use of the immediate operator “#”.

As an example,

51 CHAPTER TWO
Microcontroller Concepts

MOV A,#09h

places the number 09h into the accumulator. Likewise,

MOV 52h,#3Ah

places the constant 3Ah into internal RAM location 52h. The immediate
operator indicates that the number that follows is to be interpreted as an
immediate constant, rather than a memory location. Notice that, had we issued
the instruction

MOV 52h,3Ah

this would have copied the contents of internal RAM location 3Ah to internal
RAM location 52h. Since this is a perfectly valid 8051 instruction, the assem­
bler will not flag this as an error if we had actually meant to prefix the 3Ah with
the immediate operator. The code will not function as we might expect it to
operate. Watch out for this – it is a VERY common error!

Immediate data, by its very nature, must only occur as the source operand of
an 8051 instruction.

The instruction

MOV #52h,44h

makes no sense, and will be flagged as an error by the assembler. On the other
hand, below is a valid instruction that will put the number 44h into internal
data RAM location 52h:

MOV 52h,#44h

A detailed list of all of the instructions and their operations is contained in the
8051 programmer’s reference handbook.

Generic Address Modes and Instruction Formats

Regardless of the type of processor, certain address modes are usually available
in one form or another. This section describes some of the generic address
mechanisms and instruction encoding formats, using the 8051 instructions
and address modes as an example.

52 EMBEDDED CONTROLLER
Hardware Design

Instructions can be classified by the number of operand addresses that are
explicitly specified. For example, “CPL A — complement accumulator” is an
instruction that does not contain an explicit address, so it is a zero-address
instruction. The accumulator is called an implied operand because the instruc­
tion op code does not have an address field, since this instruction always
refers to the accumulator. An explicit operand has an address field embedded
in the instruction op code or follows the op code, usually as a pointer to the
data that is to be used. Other examples of zero-address instructions include
PUSH, POP and RETurn because the operand is implied to be on the stack.
The instruction “MOV A,address” — load accumulator with the content of
internal memory location address” is a one-address instruction because the
accumulator is an implied address, but the memory location is specified
explicitly by its address. A two-address instruction, such as “MOV addr,@R0”
(move the data at address pointed to by R0 to “addr”) has two address fields.
Some processors have three-address instructions, which allow the processor to
perform an operation on two operands and store the result in a third operand,
all of which may be referred to explicitly.

Instructions for a typical 8-bit CPU might consist of one or more op code bytes
followed by optional operand fields. The first (op code) byte would identify
the type of instruction, and the optional byte(s) following it would be the
operand(s) or addresses of the operand(s).

8051 Address Modes

Implied addressing, as described above, always references the same location
and does not have an explicit address field in the instruction. The instruction
shown would take only one byte, and would result in only one memory cycle
to fetch the op code byte. Table 2-1 illustrates this.

Table 2-1:

Implied addressing.

Instruction Operand

CPL A
complement accumulator

E4 A
(op code) (implied)

Immediate addressing is used when the operand is a constant value, and is part
of the instruction, usually immediately following the op code in program

53 CHAPTER TWO
Microcontroller Concepts

memory. An example would be an instruction that loads a constant into the
accumulator, as shown in Table 2-2.

Instruction Operand

MOV A, #35H
load accumulator with 35 hex

74 35
(op code) (constant)Table 2-2:

Immediate addressing.

The instruction would be stored in an 8-bit processor’s memory as follows:

AddressValue(hex)

1000 74 op code
1001 35 operand

Execution of this instruction would result in two memory cycles, one to fetch
the op code and one to fetch the constant.

Direct addressing includes the address of the operand as part of the instruction
rather than the operand itself. The address part of the instruction acts as a
pointer to the data to be accessed. An instruction that loads the byte of data
stored in memory location 1234 into the accumulator would consist of the op
code followed by the address 1234.

Instruction Operand

MOV A, 34H
load accumulator with the contents

of location 34

74 35
(op code) (constant)Table 2-3:

Direct addressing.

The instruction could be stored in an 8-bit processor’s memory as follows:

AddressValue(hex)

1000 E5 op code
1001 34 operand address

Execution of this instruction would result in three memory cycles, one to
fetch the op code and one to fetch the address and one to fetch the byte at
location 1234.

54 EMBEDDED CONTROLLER
Hardware Design

When dealing with values of more than eight bits, different microprocessor
vendors use different methods of storing data in memory. Of course, Intel and
Motorola chose opposite methods. The 16-bit address stored high byte first
followed by the low byte as it is done in the Motorola 68000 family. Other
processors, such as the Intel CPUs, reverse the order. For machines that sup­
port two byte or four byte values, there are two different ways of storing the
bit operands: low byte first (Intel), and high byte first (Motorola).

Indirect addressing specifies a memory address that contains the address of
the data to be transferred. An instruction that loads the byte of data that is
pointed to by the address stored in memory location whose address (1234h)
resides in the 16-bit register DPTR into the accumulator is shown below.

The instruction could be stored in an 8-bit processor’s memory as follows,
assuming that DPTR contains 1234h:

Instruction Operand

MOVX A, @DPTR
load accumulator contains the address of

the byte to be accessed

E0 DPTR=1234h
(op code) (address of the operand)

Table 2-3:
Indirect
addressing.

Code Address__Value(hex)

1000 E0 op code

External Memory
Data address Value

1234 57 operand

After completion of this instruction, the value 57 would be left in the accu­
mulator. Execution of this instruction would result in two memory cycles, one
to fetch the op code (E0), one to fetch the contents (57) of the address (1234).

The 8051 does not support true indirect addressing. In processors that do, the
address of the operand is stored at the location contained in the instruction op code.

Register indirect addressing (e.g. MOV A,@R1) uses the contents of a register
as an address, so the instruction would consist of only an op code byte. A
register points to the operand in memory, so there is no need for an address
field in the instruction. Two memory cycles are needed, one for instruction
fetch and one for fetching the data.

55 CHAPTER TWO
Microcontroller Concepts

Indexed addressing (e.g. MOVC A,@A+DPTR) is a combination of direct and
register indirect addressing, because the instruction includes an offset address
(DPTR), which is added to an index register (A register) to determine the
address of the data to transfer.

It should be noted that the nomenclature for the various address modes varies,
and the 8051 family address modes used for the examples above are not
necessarily the best examples, as other processors support more extensive
and flexible address modes.

The Software Development Cycle

The standard software development process consists of the following steps:

1) Create or edit an ASCII text file containing the human readable source
code, also known as the program instructions.

2) Translate the source code to machine-readable binary instruction code using
a language translator. This is accomplished using an assembler or compiler.

3) Load the program memory with the binary instruction code into the
processor’s program memory chip. For the SDK, the program is down­
loaded into program memory on the SDK.

4) Execute the program to test it and find program errors. For the SDK, this
“debugging” process is facilitated using a special program (debugger or
monitor) resident on the SDK.

5) Once the problem is located, the source code is corrected by repeating this
process until all errors are corrected.

Software Development Tools

Software tools include translators, like assemblers and compilers, and debug­
ging tools. Active debugging tools include:

•	 In-circuit emulators (ICE) for HW/SW integration; these are plugged into
the application circuit (the “target” system) in place of the CPU, allowing
the designer to “see inside” the microcontroller, download, and execute
programs selectively.

56 EMBEDDED CONTROLLER
Hardware Design

•	 ROM emulators (ROM ICE) that allow the designer to reduce the time it
takes to edit-compile-load-debug programs by replacing the program EPROM
with a RAM that can be loaded quickly and easily from the host computer.

•	 Simple tools, such as an LED or speaker can also be useful in debugging.

Hardware Development Tools

There are two general classes of hardware development tools available to the
embedded developer: passive analysis tools that allow looking at the operation
of the system, and active tools. Active tools allow the designer to intrude on
the operation of the system while it’s running, even making changes to the
system’s configuration and software while it is under test. The system under
test is usually referred to as the “target” system, and the computer that is used
to develop, edit, compile, assemble, and download the code to the target
system is called the “host” system.

Hardware tools include logic probes to display static logic levels and detect
pulses, oscilloscopes to look at signal waveform amplitude vs. time, logic
analyzers (with processor specific probes), and PROM programmers.

Chapter Two Problems
1. Processors such as the 8031 use multiplexed address/data buses. They

require more than one clock cycle to do a memory transfer because some
or all of the bus lines are shared. 16-bit addresses alternate with 8-bit data.
The ALE (address latch enable) signal indicates when address information
(A0-7) is present on the multiplexed address/data bus. The ALE signal is
used to latch the least significant eight bits of the address in an 8-bit register.
A minimum of two clock cycles is required to transfer data: one for latching
the address when ALE is high, and one for the actual data transfer. How
many clock cycles (minimum) would be required if the processor was a
16-bit machine doing a 16-bit transfer? Would the address latch have to
be different?

2. How many unique locations could be referenced as “address zero” in the
8031 CPU architecture? (Remember to consider all the address spaces!)

3.	 Most processor control lines are active low. Comment on the reasons for this.

57 CHAPTER THREE3

Worst-Case Timing, Loading,
Analysis, and Design

Just as in comedy, timing is essential to the success of a microcomputer design.
Often it is quite possible to get one system functioning by just interconnecting
the various components. But it is significantly more difficult to be able to guaran­
tee that many systems will work under the entire range of possible conditions
that they may be exposed to. There are many designs in production right now
that have a number of unidentified failures due to the lack of a worst-case
analysis of the design. When timing or loading problems show up in a design,
they usually appear as intermittent failures or as sensitivity to power supply
fluctuations, temperature changes, and so on.

A worst-case design takes into account all available information regarding the
components to be used with respect to variations in performance. Even when
all parameters are at their most adverse values, the worst-case design can still
be proved to meet the specifications. These variants may be due to changing
manufacturing conditions, temperature, voltage, and other variables. Without
performing a detailed analysis, there is no way of knowing if the design will
work reliably under all operating conditions. It is much better to design reli­
ability and simplicity of manufacturing into a product using worst-case design
rules than to attempt to correct a problem after the design has been implemented.
With the emphasis that must be given to the quality of the final product, a
designer is obligated to perform a detailed examination of the timing in a
system. As is the case in most quality improvements, these efforts result in
direct cost and saving time. This is clearly one of the places where the designer
can have the greatest impact on overall product quality.

58 EMBEDDED CONTROLLER
Hardware Design

Timing Diagram Notation Conventions

Timing notation is illustrated in Figure 3-1. The timing notation used in manu­
facturers’ data sheets may vary from this, but is usually very similar. It is also
important to notice that while the diagrams are reasonably standard, there is a
wide variation in the selection of symbols for each timing parameter.

The purpose of timing analysis is to determine the sequence of events in each
of the bus cycles so that we can delimit, among other things, the time available
for each of the components to respond to changes. This time is compared to
the requirements as specified in the manufacturers’ data sheets to determine
if they are compatible, and by what margin.

Low

Floating
(Not Driven)

Active

Stable

Active
(Driven)

Undefined

Active

Stable

Active
(Driven)

Changing

Valid High Transition Low Valid Transition High Valid High

(Tri-state)
Valid Valid

(High-Z) Data or Data Data

Changing

Data

Figure 3-1: Timing diagram notation as used in this book.

The most important timing specifications for interfacing components to a
bus-oriented design are:

• Rise/fall time

• Propagation delay time

• Setup time

• Hold time

• Tri-state enable and disable delays

• Pulse width

• Clock frequency

There are two general classes of logic: combinatorial and sequential. Combina­
torial logic has no memory and its output is some logical function of its current

59 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

inputs, after some delay. Examples of combinatorial logic include gates, buffers,
inverters, multiplexers, and decoders. Sequential logic has memory, which
means that its outputs are a function of both current and past inputs. Examples
of sequential logic are flip-flops, registers, microprocessors, and counters.
There are two types of sequential logic. Synchronous logic is synchronized to
change only when there is a clock transition. In contrast, asynchronous logic
does not use a clock signal. Almost all of the logic used in a microcomputer
design will either be un-clocked asynchronous logic (gates, decoders) or
clocked synchronous logic (counter, latch or microprocessor). Some types
of devices are available in either form. Each of the timing specifications in
the following discussion is described using simple logic devices as they are
typically used in embedded computer designs.

Rise and Fall Times

The rise time of a signal is usually defined as the time required for a logic signal
voltage to change from 20% to 80% of its final value. The fall time is from 80%
to 20%, as shown in the figure below. These times are also commonly defined
by some manufacturers as the transitions between the 10% and 90% levels.
Figure 3-2 illustrates rise and fall times.

Logic One

80% of Logic One

Logic Zero
20% of Logic One

Rise Time Fall Time

Figure 3-2: Rise and fall time of a signal.

Propagation Delays

The propagation delay is the time it takes for a change at the input of a device to
cause a change at the output. All devices—even wires—exhibit some propa­
gation delay. Some devices do not have symmetrical delays for positive and
negative transitions. In the Figure 3-3, the propagation times for a high to low
transition are shorter than for a low to high transition. This asymmetrical delay
is common for TTL and open collector and open drain outputs because they

60 EMBEDDED CONTROLLER
Hardware Design

are better at sinking current than sourcing it. Thus, the load capacitance is
charged more slowly when the current is being supplied from the weaker
“high side” or pull-up device. Propagation delays are usually measured from
the 50% amplitude points, as shown in Figure 3-3.

TPLH

A NAND B

Input B

Input A

TPHL

Figure 3-3: Propagation delay.

Setup and Hold Time

In Figure 3-4, a standard D type flip-flop (e.g., a 74xx74 device) is shown
along with a sample timing diagram that illustrates the operation and key
timing parameters of a flip-flop. This type of flip-flop samples the D input
whenever the clock (CK) line goes high, and after a delay, the output remains
in the same state until the next rising edge on the clock line. The triangle on
the clock input indicates that it is a rising edge sensitive input, meaning that it
will only have an effect when there is a rising edge on the clock pin. A falling
edge sensitive input would have a bubble outside the block where the clock
enters the flip-flop. In order to be able to guarantee that the flip-flop will
operate correctly, the D input must be stable during the setup and hold time.

Q Output

Data

Clock

THTPCKQ TSU

D Q

CK>

Figure 3-4: Setup and hold time.

Figure 3-4 also shows the propagation delay from clock to Q out (TPCKQ),
the setup time (T

SU
), and the hold time (T

H
). Setup time is the amount of

time a sampled input signal must be valid and stable prior to a clock signal

61 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

transition. Hold time is the amount of time that a sampled signal must be held
valid and stable after a clock signal transition occurs. If these conditions are
not met, the Q output may become invalid or even oscillate. This condition
is referred to as metastabilit. The times of these and most other signals are
frequently measured with respect to the 50% amplitude points of the clock
signal rather than the valid logic one and zero levels. An analogy for the flip-
flop as a sampling device is that of an instant camera: the clock is the shutter,
the D input is the lens, and the output is the film image. The input is sampled
when the shutter is open, and if the subject moves with the shutter open the
picture will be blurred. For the flip-flop, the “shutter open” time, referred to
as the window of uncertainty, is shown in Figure 3-5 below along with some
possible results.

Metastability of a storage device such as a flip-flop or register is caused by the
change of an input signal too close to the edge of the clock signal. In other
words, if the setup or hold time requirements are not met, the output of the
device is unpredictable
and may even be unstable!

TSU TH TH

Uncertainty

TSU

Violation Violation
Window of Setup Time Hold Time

The output may operate

normally, take an invalid Clock

level, or oscillate (which

may also explain why Data

indecisive people take

bad photos!) Q Output

Figure 3-5: Metastability of a flip-flop.

Tri-State Bus Interfacing

When multiple devices are capable of driving the same line, the possibility
exists that two or more of them will try to drive it in opposite directions at
the same time. When tri-state devices fight like this it is called bus contention.
Figure 3-6 illustrates this condition. While the data is unpredictable during
this period, there are far worse things that can happen as a result of this
condition. Since most tri-state devices have the ability to drive many loads,
they are also capable of sourcing and sinking large currents. When two of
these devices are in contention, very large currents with peaks in the tens
or hundreds of amperes can flow for times on the order of nanoseconds.

62 EMBEDDED CONTROLLER
Hardware Design

TOE TOD

Design
Margin

Drive A Data Drive B Data A Data B Data

Output B
Enabled

Output B
Enabled

Output A
Enabled

Output A
Enabled

Output
Enable
Display

Output
Disable
Display

Overlap =
TODA - TOEB

Bus
Contention

Data Bus

Output Enable B

Output Enable A

Figure 3-6: Tri-state bus timing and contention.

The large current spikes that occur during contention may stress the devices
and significantly reduce their reliability. A far more frequent problem, how­
ever, is the temporary drop or glitch in the local power supply wires that can
cause any other nearby devices to change state. As you can imagine, this can
create havoc in sequential logic, particularly for micros. Based on past experi­
ence with Murphy’s Law, these glitches generally seem to change the current
instruction to “jump immediate to format hard disk routine,” thereby erasing
all your data. In a properly designed system, there is a “dead time” when no
device is driving the bus to act as a safety margin between the times that two
devices are enabled to drive their outputs. The problems arise when the out­
put enable time of a device which is just turning on is less than the output
disable time of a device which is turning off.

Pulse Width and Clock Frequency

The width of a positive going pulse is the period beginning from its positive
transition (rising edge or leading edge) to its negative transition (falling or
trailing edge). Figure 3-7 illustrates these concepts. Pulse widths are important
in defining the operation of control signals such as the memory read or write
signals and clocks. Clock signals used for modern microprocessors usually,
but do not always, have equal high and low pulse width requirements. The
period (T) of a signal is the sum of the rise time, high time, fall time, and low
time. The frequency of a processor clock (f = 1/T) may have a lower limit as
well as an upper limit. The standard NMOS 8051 family of parts has a lower
frequency limit of 1.2 MHz. That means that the processor cannot be operated

63 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

at a lower frequency. The reason is

TCLK

Pulse

Period = 1/Frequency

Width

TPW

that the processor’s internal design
requires a constant clock, in order
to correctly maintain its state.
Other processors (such as the
80C51 series CMOS devices)
can tolerate having their clock
stopped completely, as they have
been designed to maintain their
internal states indefinitely, as long
as power is applied.

Figure 3-7: Pulse width, period, and clock frequency.

Fan-Out and Loading Analysis—DC and AC

Another important part of worst-case design is a realistic model of the signal
loading for each of the circuit’s outputs. If insufficient drive is available, buffer
circuits must be added or the number of loads must be reduced to guarantee
correct operation. Fan-out is the number of equivalent inputs that can be
safely driven by one output. A fan-out of 10 indicates that one device output
can drive ten inputs. The fan-out is determined from:

• The source, type and number of loads

• DC characteristics sources and load

• AC characteristics of the loads vs. the source test conditions

DC characteristics of the output and inputs consist of:

• The maximum current that can be produced by an output

• Maximum currents required to drive an input

The maximum output currents are specified as:

• I Minimum output low (sink) current for a valid zero output voltage
OLmin

• I Minimum output high (source) current for a valid one output voltage OHmin

Note that a low output is sinking currents that are coming out of the inputs
that are being driven. Likewise, a high output is sourcing current that goes
into the inputs that are being driven.

64 EMBEDDED CONTROLLER
Hardware Design

Maximum currents required to drive an input are specified as:

• I Maximum input low current for a valid zero input voltage ILmax

• I Maximum input high current for a valid one input voltage
IHmax

Another important convention has to do with the sign of the current flowing
in or out of a device pin. In most cases, current flowing into a device pin is
given a positive sign (as shown in Figure 3-8), while current flowing out of a
pin is given a negative sign (as shown in Figure 3-9). In both Figures 3-8 and
3-9, the device on the left is the driving device, which tries to force its output
to the desired logic state. In the logic one state, the output sources current
(–50 microampere), and the receiving device absorbs that current (+50 micro­
ampere). In the example below, the available output current is exactly equal
to the input current used by the load, resulting in a DC fan-out of 1.

Logic '1'
V+ V+

IOH IIH

Current
Output High

'1' '1'

Current Out
of Pin is
Negative

-50 µA

Current
Input High

Current
Into Pin is

Positive

+50 µA

Figure 3-8 (left):

Current sign for logic high.

Figure 3-9 (below):
Current sign for logic low.

Logic '0'
V+V+

Unfortunately, this
convention is not always
followed consistently,
so it is up to you to rec­
ognize the current direc­
tion from the context of
the situation in which it
appears. Generally, the

IOL IIL

Current
Output Low

'0' '0'

Current Out
of Pin is

Negative

+1 mA

Current
Input Low

Current
Into Pin is
Positive

-1 mA

.

current direction can be determined by keeping these images in mind, especially
since many data sheets do not specify the sign for the input and output currents.

The other type of fan-out limitation is the ability of an output to drive the
capacitance of the loads and stray wiring capacitance, also known as AC fan-
out. The AC fan-out is determined by the specified test load for the driving

65 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

chip, and the load presented by the actual load capacitance. The capacitive
load is the parallel combination of all the input capacitances of the gate inputs
attached to the signal, plus the wiring capacitance. Since the capacitors in
parallel are equivalent to a single capacitor equal to the sum of the individual
capacitances, we just add up all the load capacitor values and compare this to
the output’s specified test load. The driving device’s specified load capacitance,
CL, the test load capacitance used by the manufacturer for specifying the AC
or timing characteristics of the device. Most often, this specification is listed
in the test conditions or notes for the timing specifications of the chip. As
long as the sum of the load capacitances, including the stray wiring capaci­
tance, is less than the specified test load for the driving device, all the timing
specifications will be valid as specified in the timing section of the data sheet.
If the driving device is overloaded (actual C

L
 is greater than specified C

L
),

then the timing specifications of the device need to be de-rated (slowed
down), since additional capacitance will increase the rise and fall times of the
signal line in question. Methods for estimating the amount that an overloaded
output can withstand are described later.

AC characteristics of the outputs and the inputs consist of:

• C The load capacitance that an output is specified to drive, is listed inL

the timing specifications for the driving device under the name “test
conditions” which is usually in the notes at the bottom of the specifi­
cation sheet.

• C Maximum input capacitance of a driven input load.
in

• C stray Wiring and stray capacitance can be approximated to be in the range
of 1 to 2 picofarads per inch of wiring on a typical PC board.

As long as the inequality below is satisfied, the signal will meet the timing
specifications for the driving device. If the actual load is greater, it will delay:

Driving device spec C
L
 > actual Cload = C + C + … + C

wiringin1 in2

The AC fan-out is limited by the parallel combination of the logic inputs’
capacitance, C

in
, and the stray or wiring capacitance. Capacitors in parallel are

additive, so the load presented to an output is the sum of the input capaci­
tances of the logic inputs plus the wiring capacitance. Logic input capacitance
is often difficult to find, as it may not be listed in the component data sheet,
but rather in another section of the data book describing the characteristics

66 EMBEDDED CONTROLLER
Hardware Design

common to all members of a given logic family. Typical logic input capaci­
tance ranges from 1 to 5 pF (picofarads or 10-12 F), but may be outside this
range. The maximum load capacitance which a device is specified to drive
(CL), is usually defined in the test conditions for the timing specifications of
an integrated circuit, as it is the timing which is most affected by capacitance.
Load capacitance is usually specified in the range of 50 to 150 pF. Wiring
capacitance is often in the range of 1 to 2 pF per inch of wire for a nominal
printed circuit trace. Actual values can vary quite a bit, depending upon
the physical dimensions of the trace, proximity to surrounding signals and
distance from a ground plane, as well as the dielectric constant of the circuit
board material.

Calculating Wiring Capacitance

The standard formula for determining capacitance is:

C = (ε * A)/d

Where A is the area of two closely spaced parallel plates, d is the distance
between the plates, and e represents the permittivity of the material (permit­
tivity is the measure of how easily a material can carry electric lines of force).

For the purposes of this section, we can define the area, A, as the trace length
multiplied by the trace width. Wiring capacitance is determined as a capaci­
tance per unit length for a given trace width and distance from the ground or
power plane.

Let’s examine a typical situation. For an eight layer PC board with 8 mil
traces, and innermost layer ground/power planes, what is the capacitance per
inch of trace on each of the signal layers?

Here are the terms we’ll use in the equations to solve this problem and
their values:

• trace width (w) = 8 mils (one mil equals 10-3 inch)

• trace length (l) = 1000 mils

• area (A) = w times l

• total board thickness (T) = 0.062 inch

67 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

• number of layers (N) = 8

• number of layers separating power and ground plane (n) = 1

• fringe effect and inter-trace stray capacitance adjustment factor (f) = 1.7

• permittivity of air (e) = 8.859*10-12*(coul2 / (newton*m2))

• relative permittivity of glass-epoxy dielectric (er) used in this example = 6

We start by determining the thickness of each dielectric layer, represented by t:

t = T/(N - 1) = 8.857 mils

Next we need to determine the distance between the trace and ground/power
plane, represented by d. This is found by the formula d = nt, which in this

case makes for a simple calculation!

The capacitance as a function of the number of layers distance (Cd) is found

by the formula:

Cd = (ε * εr * A * f) / d

Using this formula,

C(1 * d) = 2.073 pF (layer closest to ground/power plane)

C(2 * d) = 1.037 pF (layer next closest to ground/power plane)

C(3 * d) = 0.691 pF (layer farthest from ground/power plane)

To find the average capacitance per inch (Cavg), then

Cavg = (C(1 * d) + C(2 * d) + C(3 * d))/ 3 = 1.267 pF

From this example, it is apparent that the stray wiring capacitance can vary
significantly depending upon which layer of a multi-layer PC board a particular
trace is located. Since a signal may travel on different layers between source
and destination, exact values may be difficult to determine.

When performing a worst-case analysis of a given design, it is most effective
to calculate the total load capacitance based on the sum of the loads’ input
capacitances, plus an estimate of the nominal wiring capacitance using 1 or 2
picofarads per inch of wiring using a rough guess for the length of the trace.

68 EMBEDDED CONTROLLER
Hardware Design

In a typical design, we might pick the diagonal distance from one corner of
the board to the other, and multiply by 1 or 2 picofarads. If the total load
capacitance is less than the driving device’s specified test load capacitance,
then the device will perform as specified. If not, or if it’s very close, we might
want to make a more accurate estimate, or avoid the problem by using a driv­
ing device that has a larger specified test load capacitance. Other alternatives
include using two outputs from the same chip in parallel to double the drive
capacity, or splitting the loads into two separate groups and driving them
independently from two different sources.

As digital IC technology has improved, allowing signals to be processed at
ever-increasing rates, the other non-ideal effects of the devices that could be
ignored at lower speeds become more important. At very high speeds, these
secondary effects become much more important. A wire ceases to be equiva­
lent to a zero ohm connection with zero time delay. For the newer high-speed
logic devices, the speed of the signal traveling down the wire, distributed
resistance and inductance, as well as capacitance, may become very impor­
tant. When the time it takes a signal to propagate down a wire are of the same
order as the rise and fall time of the signal, it behaves as a transmission line,
rather than an ideal wire. Transmission line effects are briefly described later
in this chapter.

Fan-Out When CMOS Drives LSTTL

A common design problem involves the determination of how many LSTTL
loads a CMOS output can drive. In this section, we will use the parameters
below in an example to determine the number of LSTTL loads a CMOS gate
can drive.

LSTTL gate DC Parameters:
Symbol Parameter min typ max Units Conditions

V Input Low voltage -0.3 0.8 VIL

V Input High voltage 2.4 Vcc+0.3 VIH

I Input Low current -120 -360 µAIL

I Input High current 30 50 µAIH

C Input Capacitance 10 pFIN

69 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

Absolute Maximum Operating Conditions:
Symbol Parameter min typ max Units Conditions

VOL Output Low voltage 0.2 0.4 V @ IOL max

VOH Output High voltage 2.8 3.5 V @ IOH max

IOL Output Low current 3.2 8 mA @ VOL max

IOH Output High current -600 -1000 µA @ VOH min

Note: Test conditions RL = 1K, CL = 100 pF

CMOS gate DC Parameters:
Symbol Parameter min typ max Units Conditions

V
IL

Input Low voltage 2.0 V

V
IH

Input High voltage 3.0 V

I
I

Input leakage current ~ 0 µA

C
IN

Input Capacitance 25 pF

Absolute Maximum Operating Conditions:
Symbol Parameter min typ max Units Conditions

V
OL

Output Low voltage 0.4 V @ I
OL

 max

V
OH

Output High voltage 4.5 V @ I
OH

 max

I
OL

Output Low current 3.6 mA @ V
OL

 max

I
OH

Output High current 600 µA @ V
OH

 min

Note: Test conditions R = 5K, C
L
 = 150 pF

L

For Logic One:

CMOS IOH = 600 microamperes (µA)
LSTTL I = 50 µA so 600µA/50µA = 12 loads

IH

For Logic zero:
CMOS IOL = 3.6 milliamperes (mA)
LSTTL I = 360 µA so 3.6mA/360µA = 10 loads

IL

Thus, considering the DC specifications only, the maximum number of loads
driven is 10, since the zero state is the worst-case condition. The AC param­
eters would not be the limiting factor in this case, since the CMOS output is
specified with a CL of 150 pF, and each LS input is only 10 pF. Thus, 10 loads
would present 100 pF plus stray wiring capacitance of less than 50 pF would
present an AC load less than the 150 pF CMOS output load handling capability.

70 EMBEDDED CONTROLLER
Hardware Design

How many additional CMOS loads could be added? There are two levels of
answer for this problem. First, from a DC point of view all the CMOS Iol
output sink current is used up, so from this point of view, no loads could be
added. However, there is negligible current in a CMOS input, so it is not the
practical limit. In fact, the errors in the DC computations above are in excess
of the amount required to drive a CMOS input, so in reality the DC current is
not a problem. The real limitation is the capacitive loading. Even if you assume
the loading from the TTL inputs and wiring can be ignored, the CMOS input
capacitance will limit the loading. For the output to conform to the specs, the
test load was specified as 150 pF (CL). With ten LSTTL loads of 10 pF each,
the CL on the CMOS gate output would be 10 * 10 = 100 pF. Since the CMOS
gate timing is specified at CL =150 pF, there is only 150-100 = 50 pF left over to
drive the additional CMOS loads. Since the CMOS Cin is 25 pF, the number
of additional gates that can be driven is:

50 pF/25 pF = (remaining CL) / (Cin of additional CMOS inputs) = 2

Practically speaking, the wiring capacitance on a PC board will generally be
in the 2–3 pF per inch range, so allowing 25 pF for wiring capacitance would
permit one CMOS load in addition to the 10 LSTTL loads from above.

What if the CMOS output were to drive only CMOS loads? The input capaci­
tance of the CMOS gate is 25 pF, so even if all loads were CMOS, it can only
drive CL/Cin = 150 pF / 25 pF = 6 CMOS loads, and still meet its test condition
limits. Since we must also allow for the wiring capacitance, we should limit this
device to five loads, leaving 25 pF for the wiring capacitance. The additional
load capacitance from more than five devices would likely result in timing
performance that would be poorer than that specified in the data sheet. Exces­
sive capacitance can also make ground bounce worse, which is the change in
on-chip ground voltage due to rapid current spikes caused by charging load
capacitance, developing a voltage across the lead inductance of the driving IC.

Transmission Line Effects

When using high-speed logic and the rise and fall times are of the same order
as the propagation of the signal, transmission line effects become significant.
When a signal transition propagates down a wire, it will be reflected back if
the signal is not absorbed at the destination end. At lower speeds, the effect
can be ignored, but with the fastest processors now in use, most designers will

71 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

need to consider whether the effects will have a negative impact on their
designs, and take appropriate action if necessary.

There are several characteristics of digital transmission lines that must be
addressed, including the following:

• signal transition time vs. clock rate

• mutual inductance and capacitance (crosstalk)
• physical layout effects
• impedance estimates

• strip line vs. micro strip
• effects of unmatched impedances

• termination and other alternatives
• series termination vs. parallel termination
• DC vs. AC termination techniques

The techniques for high speed design are beyond the scope of this text, and are
covered in detail in an excellent text on the subject, High Speed Digital Design,
a Handbook of Black Magic, by Howard W. Johnson and Martin Graham. In
contrast with the subtitle, this subject is easily understood by applying some
very basic physics.

A transmission line is a conductor long enough so that the signal at the far
end of the line is significantly different from the near end, due to the time it
takes the signal to propagate from one end to the other.

In this book, we will assume that the interconnections between the devices are
not long enough to require transmission line analysis. In order to verify that
this is the case we can use a simple estimate. The rough estimate we will make
is based on the idea that a wire does not have to be analyzed as a transmission
line if the signal takes longer to rise or fall than it takes to get from one end of
the wire to another. In other words, if the signal doesn’t have to travel too far,
both ends of the wire are at approximately the same voltage. In order to come
up with a numerical value to determine if a signal must be treated as a trans­
mission line, there is a simple calculation that can be used, shown below.

l = T / D, where r

l = length of rising or falling edge in inches (in)
T = rise time in picoseconds (pS)

r

D = delay in picoseconds per inch (pS/in)

72 EMBEDDED CONTROLLER
Hardware Design

For traces on a standard printed circuit board, the value for D will be in the
range of 100 to 200 pS/in. Depending upon how much distortion you’re willing
to live with, the critical trace length will be between one-sixth and one-quarter
of the length of a trace corresponding to the signal’s transition. For a trace that
is shorter than one-sixth the length of the signal’s rising or falling edge, the
circuit seldom needs to be considered to be a transmission line. Traces that are
much longer than one-quarter the length of the fastest edge will start to behave
as transmission lines, exhibiting reflections of the signal when the transition
gets to the far end of the trace and is reflected back to the near end. Once the
trace is about half of the length it takes for a logic transition to propagate, the
problems become quite pronounced.

Let’s look at an example. A logic device on a standard glass-epoxy printed
circuit board has a 2 nS rise time.

This signal has a rising edge that is:

(2 nS)/(150 pS/in) = ~13 inches long.

That means a trace that is one-sixth that length, or about two inches or less,
does not have to be considered as a transmission line. If the trace is much
longer than two inches, it will begin to show significant distortions on the
rising and falling edges due to the fact that there is a different signal voltage at
each end of the trace at the same instant, resulting in reflections of the signal
from the ends of the trace.

This is one of the most important reasons for using logic that is fast enough,
and not too much faster than required to meet the timing requirements.
While it might seem tempting to buy the fastest device available to reduce the
delays in a device which does not meet the timing requirements, doing so can
result in a lot more difficult problems to solve!

Ground Bounce

Another effect of high-speed signal transitions is called ground bounce. Ground
bounce occurs when a large peak current flows through the ground pin of a
chip when one or more logic outputs change state and discharge their load
capacitances through the chip’s ground pin. While the parasitic inductance of
the ground pin may not seem very significant, in the nanohenry (10-9 H)

73 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

range, fast transients can cause large voltages to appear across the ground pin.
This occurs most often when multiple bus signal outputs from one chip
change state at the same time. The rapid, parallel current pulses which result
from charging or discharging stray bus capacitance must be carried through
the ground or power pins, which have inductance.

The voltage across an inductor is equal to the inductance times the rate of
change of current through the inductor, or:

V = L * di/dt, where
V = instantaneous voltage across the inductor (volts)
L = Inductance (henry)
di/dt = Rate of change of current (amperes/sec)
and current i = Q/t (amperes = coulombs per second)

The charge on a capacitor is Q = CV (coulombs = farads * volts)

V = L * C * (delta V) / (delta t) 2 approximately, or

V = L * C * (Voh-Vol) / (Tr)

2 using the output voltage and rise time

Because of the high-speed (nS) and large (amperes) peak currents, even the
small nanohenry inductance can induce a voltage transient on the order of
volts. (The instantaneous voltage across an inductor is V = L * di/dt.) For
typical high speed signals nanohenries*amperes/nanoseconds = volts! This
effect is minimized by the use of minimum circuit interconnect trace lengths,
wider ground traces, power and ground planes, and small, surface mounted
IC packages that have very short leads.

For example, a CMOS output driving a 100 pF load with a rise time of
2 nS would induce a voltage across a typical 1 nH inductance of the chip’s
ground lead:

V = 1 nH * 100 pF * (4.5 - 0.5 V) / (2 nS) 2 = 0.1 V

While a voltage of 0.1 volt or 100 millivolts may not seem like much, remem­
ber that a part with many outputs, such as a processor, will sometimes switch
many outputs at the same time, and the current that flows through those pins
all has to flow through a single ground pin. An 8-bit output will cause 0.8 volt
pulse or ground bounce. If the processor drives an 8-bit data bus and a 16-bit
address bus low at the same time, this would result in a 2.4 volt bounce! The
ground bounce voltage across the ground lead inductance results in a different

74 EMBEDDED CONTROLLER
Hardware Design

ground voltage reference for the chip while the chip’s ground is bouncing.
Needless to say, this ground bounce can cause a logic level to change during
the brief pulse, which can cause trouble with circuits, such as clock signals,
which are edge sensitive. This is why high-speed logic devices may have mul­
tiple, short ground pins, and may only be available in small, surface mounted
packages. To make things even worse, if two devices overlap slightly in time
driving the bus, very large current transients may briefly generate even larger
currents that in turn generate larger ground bounce pulses. This can disturb
several chips on the board at the same time.

The power supply leads are also subject to bounce for exactly the same reasons,
and even though the power supply is not used as a logic voltage reference, the
resulting drop in the local power supply voltage to the chip can result in errors.

While exact ground lead inductances may prove difficult or impossible to
measure, there is always some inductance in the ground lead, and the longer
the lead, the greater the inductance. The example above illustrates another
reason why it makes sense to avoid logic that is faster then necessary, and to
use very short ground and power wires. In fact, high speed PC boards should
use separate inner layers of a multi-layer board to provide large ground and
power planes, allowing the chips’ power and ground leads to be connected
using very short wires.

The magnitude of the bounce depends upon the number and direction of
logic transitions, so the noise is also data dependent! This is an apparently
intermittent hardware design fault with symptoms that act like a software
bug, since it may only happen at certain points in executing a program, with
certain data values.

The example also shows why it is so important to maintain sufficient toler­
ance to noise in the logic. This noise tolerance is referred to as noise margin,
which is covered in the next section. Noise margin analysis is especially
important in a high-speed logic design, to prevent transient logic errors,
which are extremely difficult to track down. This is another example of how
a proper analysis and worst-case design can save a lot of time and money
while delivering much higher quality and ultimately reliability. In the next
section, the noise margin analysis process is described in detail.

75 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

Logic Family IC Characteristics and Interfacing

The three most common logic families are:

• TTL: transistor-transistor logic (also known as bipolar logic)

• NMOS: n-channel metal oxide semiconductor field effect transistor logic

• CMOS: complementary (n- and p- channel) MOS logic

All three logic families have versions with TTL compatible inputs, once the
most common type, followed by later NMOS and CMOS. Because of its lower
power density and relatively high circuit density however, CMOS has become
the most common form of logic, particularly in high density and low power
battery operated systems. TTL logic uses bipolar transistors requiring input
drive currents on the order of hundreds of microamperes to a few milliamperes,
depending on the version. Input voltage ranges for TTL level compatible logic
are generally 0 to 0.8 volts for logic zero and 2.4 to 5 volts for logic one. Output
voltages are from 0 to 0.4 volts for logic zero and 2.8 to 5 volts for logic one.
The 0.4 volt difference is called the noise margin voltage because additive noise
at or below this level will not change zeros to ones or vice-versa. The logic
threshold voltage (VT) or “0/1 decision point” for TTL logic is typically around
1.5 volts. It may range anywhere between 0.8 and 2.0 volts depending upon
supply voltage, temperature, and varies from one device to another. For TTL
circuits, the noise margin is at least 0.4 volts. Figure 3-10 shows the concepts
of noise margin and logic threshold voltages.

Output One
Input'1' Noise Margin

Output
Zero
Input

'0' Noise Margin

Undefined

Vcc

VOH min

VOL max

Gnd

VIL max

VIH min

VT

Valid One Valid

Valid Zero
Valid

+5 Volts

2.8 Volts

0.4 Volts

0 Volts

2.4 Volts

~1.5 Volts

0.8 Volts

Figure 3-10: Typical TTL logic voltages and noise margin.

76 EMBEDDED CONTROLLER
Hardware Design

Interconnecting different logic families, such as CMOS and TTL, requires the
designer to assure the compatibility of the logic signal voltage levels, and
adapt the circuit as necessary to maintain appropriate noise margins. The
equivalent resistance or impedance of the signal network also has an impact
on the noise in a specific circuit. High impedance inputs are more prone to
noise than low impedance inputs. The interface design process is illustrated
by an example at the end of this chapter.

TTL logic is capable of sinking high currents and is used for driving very fast,
large, heavily loaded buses. Both active and passive pull-up output devices are
used with TTL. The active pull up, referred to as a totem-pole output uses one
transistor to source current and one to sink it. The passive pull-up uses a tran­
sistor to sink current, and a resistor connected to V+ as a current source. If a
pull up resistor is not connected to the gate’s output pin, and the collector is
connected only to the output pin, it is referred to as an open collector output In
both cases, the output Vcc
current sinking capa­
bilities are greater than
current source capacity.
Many devices can sink a
few milliamperes, but
can only source hun­
dreds of picoamperes.
Figure 3-11 shows both
totem pole and open Active Pull Up

Vcc
Device Package

From
Internal Output

Pin

Device Package

Circuits

Totem Pole
collector outputs.

External
Resistor

Output
Pin

Passive Pull Up
Open Collector

Figure 3-11: TTL outputs, totem pole and open collector.
TTL and CMOS logic
are available in several versions, each identified by a distinctive prefix in the
part number. Some of the more common versions and their prefixes are:
74xx: standard TTL
74LSxx: low power Schottky clamped TTL
74ALSxx: advanced LS TTL
74Fxx: (fast) high speed TTL
74HCxx: high speed CMOS with CMOS compatible inputs (Vt = ~Vcc/2)
74HCTxx: high speed CMOS with TTL compatible inputs (Vt = ~1.5V)
74FCTxx: high speed CMOS with TTL compatible inputs (Vt = ~1.5V)
74ACTxx: advanced high speed CMOS with TTL compatible inputs
74BCTxx: very high speed CMOS/Bipolar with TTL compatible inputs

77 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

Schottky logic (74ALSxx 74LSxx and 74Sxx) incorporates a low Vf (forward
voltage drop) Schottky diode across the collector-base junction of a transistor
to prevent it from saturating. This increases the speed for turning the transistor
off. TTL is generally used where low cost, output drive, and high speed are
important, and there is no objection to the relatively high power consumption
and resulting heat.

NMOS logic was used for moderate complexity logic ICs such as more mature
microprocessors. Most NMOS logic ICs have TTL compatible voltage specs and
operate at a lower power and speed than TTL. The power consumed by NMOS
lies between TTL and CMOS, as does its speed. The input current is nearly
zero since the MOSFETs have extremely high input resistance. Unfortunately,
they do have fairly large input capacitance, limiting the circuit speed. The
output configurations are similar to TTL except the transistors are n-channel
field effect transistors (FETs) rather than bipolar NPN. Both active totem pole
and passive (open drain) outputs are used in microprocessor and microcon­
trollers. Because of the constant operating current drain, these devices tend to
be limited in size and complexity.

CMOS logic has a significant advantage since it does not use any significant
amount of power when it is static (not changing state). Most of the power
used in an operating device is due to the charge and discharge of internal
capacitance and the current transient when both N and P devices are partially
on. As a result, power consumption is a function of clock rate for CMOS
devices. Some processors are even designed to take advantage of this fact by
incorporating “sleep” or low power modes stopping some or all of the clock
operations when nothing important is going on. This is frequently required
for battery-operated systems to maintain a reasonable battery life. Another
advantage is the standard CMOS logic threshold is one half the supply voltage,
and the output voltages tend to be very close to Vcc and ground voltage,
resulting in higher noise margins than those of TTL devices. This is particularly
important for CMOS devices that operate at reduced power supply voltage.
CMOS devices are available which operate at 3 volts or less.

Because CMOS logic is inherently symmetrical, the rise and fall times tend to
be nearly equal. The symmetry also results in equal source and sink capabilities.
The inherent increase in noise margin makes CMOS less susceptible to noise
than TTL and NMOS. Figure 3-12 illustrates this. CMOS devices operating at
voltages other than 5 volts, such as 3.3 volts, will have a threshold voltage

78 EMBEDDED CONTROLLER
Hardware Design

corresponding to Vcc/2. Some versions of CMOS logic operate with a reduced
noise margin in order to have TTL compatible input voltages. This is accom­
plished by artificially lowering the input threshold voltage to 1.5 volts, the
same as used for TTL. These TTL input threshold compatible circuits have a
T in their number (74HCT, 74BCT, etc.) indicating they have TTL compatible
inputs. A series of high-speed logic compatible with the TTL logic family in
function and input voltage is the 74HCTxx (High speed CMOS TTL compatible)
series. The advantage of the ‘T’ series CMOS devices is they can be driven
directly by devices having TTL output voltage levels. The ‘T’ series of CMOS
devices has the disadvantage that the noise margin is less than it is for true
CMOS compatible inputs due to the shifted threshold voltage. The 74HCxx
series is pure CMOS with a threshold voltage of one-half the supply voltage
(2.5 volts for a 5 Vcc) and correspondingly higher noise margins. As a result,
a standard TTL output VOHmin of 2.8 volts is not enough to guarantee a logic
one value for a 74HCxx gate input.

Vdd +5 Volts

VOH min 4.5 Volts

VOL max 0.4 Volts

Gnd 0 Volts

Valid One

Output

'1' Noise Margin

Undefined

'0' Noise Margin

Valid Zero
Output

Valid
One
Input

VIH min 3 Volts

VT 2.5 Volts

VIL max 2 Volts

Valid
Zero
Input

Figure 3-12: Typical CMOS logic voltages and noise margin.

Interfacing TTL Compatible Signals to 5 Volt CMOS

Interfacing a CMOS output to a TTL input is a direct connection, as long as
the CMOS output is capable of sinking the TTL device’s input low current.
Interfacing a TTL output to a standard CMOS input requires the use of at least
a pull up resistor. A resistor on the TTL output to Vcc will ensure the output
voltage is pulled high enough to guarantee the logic one output signal is
interpreted as a logic one by the CMOS input. Another useful technique when

79 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

using 5 volt logic to drive CMOS circuits, is to use a higher voltage open
collector or open drain output with a pull up resistor connected to the higher
supply voltage. This level shifting technique can also be used for driving other
high voltage circuits such as high voltage outputs. In either case, the objective
is to guarantee there is sufficient noise margin to guarantee a valid logic one
when the TTL compatible output drives a CMOS input.

It is important to note that when a TTL output is pulled above its normal
output high voltage, it will not source any significant current. This is because
the TTL output source is equivalent to a high resistance in series with a voltage
source that is effectively limited to around 3 volts, due to internal design
constraints. As the output voltage increases until it equals the internal voltage,
the output can no longer source any current. When the voltage is increased
beyond the internal circuitry (up to a limit of Vcc), the internal circuitry is
equivalent to a reverse biased diode, so only leakage currents in the sub-
microampere range will flow into the output device. As a result, the effect of
a TTL output on external circuits is negligible when the pin is pulled high by
an external resistor.

Also, a 5 volt TTL compatible output is often compatible with a 3 volt CMOS
device input, since the CMOS threshold (Vcc/2 = 1.5 volt) is the same as a 5 volt
TTL gate (TTL Vt = 1.5 volt). Most of the 3 volt CMOS devices are designed
to withstand a 5 volt input signal, so it is often possible to interface 5 volt TTL
outputs directly to 3 volt CMOS inputs. However, if the 3 volt CMOS inputs
are not designed to handle 5 volt inputs, the CMOS device could be destroyed
with an input signal greater than 3 volt, so it is important to verify this. A 3
volt CMOS device output will be close to 3 volt, so it can drive a 5 volt TTL
compatible input directly.

A 3 volt CMOS output would probably be marginal driving a 5 volt CMOS
input (Vt = Vcc/2 = 2.5 volt), leaving less than 0.5 volts of noise margin. Since
the 3 volt CMOS output generally cannot withstand a pull-up resistor to 5 volts,
it is necessary to add a level shifting IC to convert 3 volt logic levels to 5 volt.

Level shifters are available for converting logic levels from one family to an­
other, including 3 volts to and from 5 volt, or 5 volt TTL to +/- V ECL (emit-
ter-coupled logic), and 5 volt levels to +/-12 volt RS-232 signals. There are also
special ICs for driving output loads requiring either a high voltage or high
current output, such as a light, motor or relay. Most microcontrollers have

80 EMBEDDED CONTROLLER
Hardware Design

very weak output drive capability, so external driver ICs may be necessary.
These would typically be needed to drive LEDs, a vacuum fluorescent display,
or a motor. Solid-state relays even allow large AC loads to be controlled by a
micro. Likewise, there are other devices (i.e., optical isolators), allowing high
voltages (like 110volt AC inputs) to be safely converted to logic levels for
input to a microcontroller. Devices that use potentially hazardous high volt­
ages should be isolated from the rest of the circuitry for reasons of safety.
While it may be possible to connect such devices directly to our circuits, they
would allow us to come into contact with potentially fatal voltages. Unfortu­
nately, the standard 50 or 60 cycle AC power supply used almost everywhere
has the unfortunate characteristic that it is very nearly the optimal voltage to
guarantee that a human heart will stop functioning due to muscle fibrillation.
Customer death by electrocution is sure to result in the next of kin hiring an
attorney to relieve you of all your assets. . . . unless, of course, they’re your
next of kin! There are many isolation devices available, most of which use the
same basic approach.

The isolation can be accomplished using optical or magnetic means, which can
provide a barrier to transient voltages that can be on the order of thousands of
volts. The barrier is trans- High Voltage

Isolationparent, and so allows light Boundary

to pass, but is made

of a good insulator

Light from LED
to prevent electrical Current Flows in Turns on the Switch,

LED, it Emits Light Allowing Current Flowcurrent from flowing

across the boundary. Light

Crosses
Figure 3-13 shows a simple Boundary
optical isolation circuit.

Figure 3-13: Optical isolation allows connection to hazardous voltages.

This isolation approach can be used to input high voltages to a microcontroller
safely by connecting the LED to a high voltage source in series with a resistor
and protective diode to limit the LED’s current and prevent the LED from
being exposed to the potentially destructive reverse voltage. The output tran­
sistor will then be turned on whenever the LED is turned on by one half of
the AC power cycle. This is useful for time of day clock functions, since the AC
power mains frequency is maintained very accurately by the power utilities
over a period of time. The output switch can be connected to the processor
counter or interrupt input, allowing the processor to keep track of time and
synchronize its operation with the AC power cycle.

81 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

High voltage outputs can also be controlled safely by using the micro’s output
to turn on the LED that turns the output switch on. In this case, another type
of switch such as an SCR (silicon-controlled rectifier) or TRIAC (an AC version
of the SCR) is used rather than a transistor. SCR and TRIAC switches can be
obtained to handle relatively large AC loads, such as lamps, and motors.
These devices are often referred to as solid-state relays (SSR), since they are
equivalent to an electromechanical relay, except that they are implemented
with solid-state semiconductor devices instead of using a coil to move a
switch. Both isolated inputs and outputs are available in complete modules
that have all the necessary circuits to monitor and control high voltage and
power devices, using optical isolation for safety. They have microcontroller
compatible I/O on one side that is optically isolated from the high power
outputs on the other side.

Very often, even when safety is not an issue, microcontroller chips simply
cannot handle the voltages or currents required to interface with other devices.
In some cases it is required when connecting one logic family to another,
incompatible family, such as emitter-coupled logic (ECL) levels or RS-232
interfaces utilizing negative voltages.

Sometimes, a plain, old-fashioned electromechanical relay is a better solution,
since relays usually have contact resistances that are far lower than can be
found in a semiconductor switch. In some cases, a simple transistor or MOSFET
switch can be used to control a load operating at voltages which are greater
than the logic supply, such as motors, solenoid actuators, and relays which
may require 12 or more volts to operate.

The circuitry required to interface between logic levels and high-level circuits
is described in detail elsewhere, including an excellent book titled The Art of
Electronics, by Horowitz and Hill. If you don’t already have this book—and
you have to do much electronic design or interfacing—you should definitely
obtain a copy of this very handy book.

The real world is an analog place, and interfacing between the discrete, digital
world of computers and the real world demands significant attention. The
interface between low level analog signals and logic is handled in another
chapter of this book.

At this point, it is time to look at some simple examples, so we can see exactly
how a worst-case analysis should be performed. The next section illustrates

82 EMBEDDED CONTROLLER
Hardware Design

part of the worst-case analysis for a real laboratory instrument that is still used
in the healthcare industry. This product’s poor reliability was seriously incon­
venient for the medical staff and patients who depend upon it, and if it had lead
to an incorrect diagnosis, a truly fatal error! It is in these types of applications
that worst-case design is most important, and the cost of unreliable hardware
in the field almost always greatly exceeds the cost of avoiding the problem by
using proper design and analysis techniques. Now let’s turn our attention to
the analysis of the worst-case noise margin for an 8051 based design example.

Design Example: Noise Margin Analysis Spreadsheet

The following spreadsheet shows the results of a noise margin on a design
that was already in production at the time of the analysis. The product’s users
had complained about intermittent glitches, and the author was consulted to
determine the source of the problem. After a quick look at a few of the noise
margin values, it became obvious that there were deficiencies in the design in
that area. A portion of the spreadsheet used in that analysis is shown in Table
3-1, with problems shown in bold italic underline font.

The first column of Table 3-1 is the signal name, followed by the pin number
and chip which is the source of the signal, followed by the source’s worst-case
output voltages, Volmax and Vohmin. The next columns list the loads on the
signals and their respective worst-case input voltages Vilmax and Vihmin. The
noise margins are shown in the last two columns, Vil - Vol for the logic zero
case, and Voh - Vih for the logic one case. As can be seen, the logic zero noise
margins are all probably acceptable, as the lowest value is 0.3 volts. The logic
one noise margin is zero or negative for most of the devices listed, which is
completely unacceptable. Any noise on the power supply, ground or the sig­
nal lines themselves can easily cause a logic input to interpret the wrong logic
state, causing an error. An interesting thing to observe is that none of them
were very far out of spec, and the instrument worked perfectly most of the
time. These problems can be virtually impossible to find in the field. Hooking
up a test instrument like a scope or logic analyzer to the problem signals often
makes the problem go away, due to changing the ground currents and imped­
ances of the circuit. The specs that cause the problem in this case are the high
Vih specs of the loads, especially the SRAM chip. The example design in the
sheet above represents a relatively common problem with devices that are
advertised as “compatible” with other logic families. The solution to the prob­

83 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

8051 Noise Margin Analysis - Sample

OUTPUT INPUT Noise

logic

Margin

logicVol Voh Vil Vih
Signal Pin(s) Source max min Load(s) Signal max min zero one

PSEN/ 29 8051 0.40 2.00 EPROM OE/ 0.80 2.00 0.40 0.00

RD/ 17 8051 0.40 2.00 SRAM OE/ 0.80 2.20 0.40 -0.20

(P3.7) 0.40 2.00 82C55 RD/ 0.80 2.00 0.40 0.00

WR/ 16 8051 0.40 2.00 SRAM WR/ 0.80 2.20 0.40 -0.20

(P3.6) 0.40 2.00 82C55 WR/ 0.80 2.00 0.40 0.00

A15 (P2.7) 28 8051 0.40 2.00 74LS138 A 0.80 2.00 0.40 0.00

A8..14 21-27 8051 0.40 2.00 SRAM A8..14 0.80 2.20 0.40 -0.20

(P2.0-P2.6) 0.40 2.00 EPROM A8..14 0.80 2.00 0.40 0.00

0.40 2.00 GAL A8..14 0.80 2.00 0.40 0.00

ALE 30 8051 0.40 2.00 74LS373 LE 0.80 2.00 0.40 0.00

AD0..7 39-32

(P0.0-P0.7)

8051 0.40

0.40

0.40

2.00

2.00

2.00

74LS373 A0..7

SRAM D0..7

82C55 D0..7

0.80

0.80

0.80

2.00

2.20

2.00

0.40

0.40

0.40

0.00

-0.20

0.00

SRAM 0.40 2.20 8051 D0..7 0.80 2.40 0.40 -0.20

EPROM 0.45 2.40 8051 D0..7 0.80 2.40 0.35 0.00

82C55 0.40 3.50 8051 D0..7 0.80 2.40 0.40 1.10

RAM Enable 16V8 0.50 2.40 SRAM /CE 0.80 2.20 0.30 0.20

EPROM En. 16V8 0.50 2.40 EPROM /CE 0.80 2.00 0.30 0.40

Table 3-1

lem is very simple and inexpensive: the addition of pull-up resistors to the
signals that have zero or negative noise margin in the logic one state. This also
impacts the output low current that must be handled by the signal source
chip outputs, so it must be taken into account in the load analysis and pull up
resistors should be chosen accordingly.

84 EMBEDDED CONTROLLER
Hardware Design

It is important to note that there are four sources listed for AD0..7, since there
are four devices that drive the data bus. Only the data paths that are used need
to be evaluated vs. loading analysis, where unused paths load the bus. The
load analysis for another similar design is shown in Table 3-2, which tabulates
the capabilities of the various driving devices, and the loads that are presented
to them. The first three columns (signal, pin and source) identify the signal
source, the next three (IOL, IOH and CL), list the corresponding source’s
output drive current and capacitive load values. The next two columns (load,
and signal) identify the load’s signal names. The Qty column is the number
of loads in the case of multiple signals connected to the same output, or the
number of inches of wire in the case of the wire capacitance. The next three
columns (IIL, IIH, and Cin) define the load characteristic of a single input’s
input current and input capacitance. For the interconnect wiring, Cin is the
estimated stray wiring capacitance per inch of the printed circuit trace. The
last three columns show the extended totals and grand totals for each signal,
followed by the design margin, which should be a positive number. In this
case there is only one problem, due to excessive capacitive loading of the SRAM
when it drives the data bus, AD0..7.

The output capacitive load specs are usually found as notes within the AC
section of the chip specification listing the various timing parameters. This is
because the capacitive loading affects the rise and fall time of the signal, so the
capacitance value is really used as a test condition for the timing measurements.
Input capacitance may be difficult to find in the specification sheet, it may be in
a different “family” specification sheet or handbook, or may not be specified at
all. When it is not specified, a reasonable estimate can be made by substituting
values for similar parts in the same type of package.

The SRAM output is specified with a Cload value of 50 pF, which is relatively
low value. By using a very low load capacitance, the SRAM’s timing specs look
good due to shorter than normal rise and fall times, since the chip is not driving
a realistic load. This is a good example of a manufacturer’s “specsmanship.”
They are intentionally playing games with the test conditions to make their
device appear to be better than it is. That way when someone looks at their
timing specs, the shorter rise and fall times make their chip appear to be faster
than another equivalent chip that is specified with a larger capacitive load
value, when the chips are actually identical. Unfortunately, this practice is all
too common, so that the designer must view the claims on the cover of a data
sheet very critically. If it looks to good to be true, then it probably is!

85 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

Table 3-2
Source

Signal Pin#
PSEN/ 29

RD/ 17
(P3.7)

WR/ 16
(P3.6)

A15 28
(P2.7)

A8..14 21-7
(P2.0-P2.6)

ALE 30

AD0..7 39-2
(P0.0-P0.7)

Load Unit Load Total
uA uA pF uA uA pF uA uA pF

Source IOL IOH CL Load Signal Qty IIL IIH Cin IIL IIH Cin
8051 3200 -60 100 EPROM OE/ 1 -1 1 12 -1 1 12

wire cap 2 2 4
Total -1 1 16

Margin 3199 59 84
8051 1600 -60 80 SRAM OE/ 1 -1 1 7 -1 1 7

82C55 RD/ 1 -1 1 10 -1 1 10
wire cap 3 2 6

Total -2 2 23
Margin 1598 58 57

8051 1600 -60 80 SRAM WR/ 1 -1 1 7 -1 1 7
82C55 WR/ 1 -1 1 10 -1 1 10
wire cap 3 2 6

Total -2 2 23
Margin 1598 58 57

8051 1600 -60 80 74LS138 A 1 -200 20 10 -200 20 10
wire cap 2 2 4

Total -200 20 14
Margin 1400 40 66

8051 1600 -60 80 SRAM A8..14 1 -1 1 7 -1 1 7
EPROM A8..14 1 -1 1 12 -1 1 12
wire cap 3 2 6

Total -2 2 25
Margin 1598 58 55

8051 3200 -60 100 74LS373 LE 1 -400 20 10 -400 20 10
wire cap 2 2 4

Total -400 20 14
Margin 2800 40 86

8051 3200 -800 100 74LS373 A0..7 1 -400 20 10 -400 20 10
SRAM D0..7 1 -1 1 7 -1 1 7
EPROM D0..7 1 -1 1 12 -1 1 12
82C55 D0..7 1 -10 10 20 -10 10 20
wire cap 5 2 10

Total -412 32 59
Margin 2788 768 41

SRAM 1600 -600 50 74LS373 A0..7 1 -400 20 10 -400 20 10
8051 D0..7 1 -1 1 20 -1 1 20
EPROM D0..7 1 -1 1 12 -1 1 12
82C55 D0..7 1 -10 10 20 -10 10 20
wire cap 5 2 10

Total -412 32 72
Margin 1188 568 -22

EPROM 1600 -600 100 74LS373 A0..7 1 -400 20 10 -400 20 10
SRAM D0..7 1 -1 1 7 -1 1 7
8051 D0..7 1 -1 1 12 -1 1 12
82C55 D0..7 1 -10 10 20 -10 10 20
wire cap 5 2 10

Total -412 32 59
Margin 1188 568 41

82C55 1600 -60 80 74LS373 A0..7 1 -400 20 10 -400 20 10
8051 D0..7 1 -1 1 20 -1 1 20
EPROM D0..7 1 -1 1 12 -1 1 12
SRAM D0..7 1 -1 1 7 -1 1 7
wire cap 5 2 10

Total -403 23 59
Margin 1197 37 21

86 EMBEDDED CONTROLLER
Hardware Design

When an output like this is operated with actual capacitive load greater than
the test conditions, the related timing specs for the device must be de-rated,
due to the degraded rise and fall times that will occur. As long as the load
capacitance is no more than twice the spec value, this will be sufficient. The
excess C load will increase the stress on the driver. If the overload is much
greater than two times normal, the device can be overstressed due to the
relatively large currents that will flow into the load capacitance on transitions
when the C is charged and discharged through the driving output. As long as
the output is not overloaded too much, the resulting increase in the rise/fall
time can be estimated, resulting in a de-rated timing spec. All we have to do is
calculate the additional rise time and add that to the timing values specified in
the data sheet. In order to do that, we need to evaluate the output circuit’s
performance. This can be accomplished by noting that the output current drives
the load capacitance from a logic low to high or vice versa. For our purposes,
we will assume that the interconnect does not behave like a transmission line,
which is most often the case for garden variety microcontroller components.
If the chips used have a fast rise time and trace length greater than about one-
sixth the edge length of the pulse, then it is necessary to analyze the circuit as
a transmission line. In this case we will look at the simpler problem.

By assuming a constant current charging the capacitance, the voltage will ramp
linearly from one logic level to the other. To make a rough estimate, we can
use the source’s output
current and load capaci­
tance to determine the
signal slew rate, and
the difference between
the high and low logic
levels to determine
the delay. Figure 3-14
illustrates this.

Let’s next look at a
simple example show­
ing how to de-rate the
timing based on the
approximation tech­
nique just described.

V

Vih min

Vil max
with

Excess C

delta V

delta T

’d C

T

Rise Time

Rise Time with Spec

Figure 3-14: Derating delay for excess CL.

87 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

First we make the assumption that the signal timing measurements in the
data sheet are made under the specified test conditions, usually with the out­
put loaded by R

L
 and C

L
 in parallel to ground. The output delay specifications

in the data sheet include the internal delay as well as the rise time. The output
drive current charges CL within the specified time. The circuit can be divided
into two parts: the specified load, and the additional output current available
to drive the excess load C. So the additional delay (delta T) we are looking for
depends upon the leftover drive current (delta I) which is available to charge
the excess load capacitance (delta C). The equation for this is:

Delta T = (delta V * delta C) / (delta I)

Let’s look at a typical example. An SRAM is specified with a 50 nS access time,
but the outputs are overloaded with respect to the CL spec in the data sheet.
What access time spec should be used for the actual conditions specified below?

The output is specified to drive CL = 50 pF, but the actual load is 100 pF.

The output is specified to drive 20 mA into the load, but the load is only 10 mA.

The driven device has input voltage specs Vilmax = 0.4 V, Vihmin = 3.4 V.

Spec values: Actual Values: Difference:------
C

L
 = 50 pF 100 pF 50 pF = delta C

Io = 20 mA 10 mA 10 mA = delta I

Voltage: Vih - Vil = 3.4 - 0.4 = 3 V = delta V

Delta T = (delta V * delta C) / (delta I)

Delta T = (3 V * 50 pF) / (10 mA) = 15 nS

So in this case 15 nS should be added to all the output delay specs for the
driving device. The access time used should be:

Taa(actual) = Taa(spec) + (delta T) = 50 nS + 15 nS = 65 nS

Since the output current from most devices is larger at the beginning of the
transition and smaller near the end of the transition, the approximation is
only a rough guide. Also, the delta V calculation is conservative, since the
input threshold voltage is typically half way between the Vih and Vil values.

88 EMBEDDED CONTROLLER
Hardware Design

So, the estimate as shown will usually be conservative compared to actual
performance. All of the above must be used with caution, and is only an
approximation of the additional delay caused by excess C

L
, so it is wise to

allow additional margin in the timing for any de-rated specs.

Here’s another typical example. An LSTTL gate is to be used to drive one
LSTTL load and a CMOS processor clock input, as shown in Figure 3-15.
An interface must be made which will guarantee the CMOS input voltage
requirement will be met with the same noise margin as a standard LSTTL
input. The LSTTL and CMOS gates have the specs as defined below:

LSTTL Gate DC Parameters
Symbol Parameter min typ max Units Conditions
V

IL
Input Low voltage -0.3 0.8 V

V
IH

Input High voltage 2.4 Vcc+0.3 V
I
IL

Input Low current -120 -360 µA
I
IH

Input High current 30 60 µA

Absolute Maximum Operating Condition:
Symbol Parameter min typ max Units Conditions
V

OL
Output Low voltage 0.2 0.4 V @ I

OL
 max

V
OH

Output High voltage 2.8 3.5 V @ I
OH

 max
I
OL

Output Low current 3.2 8 mA @ V
OL

 max
I
OH

Output High current -600 -1000 µA @ V
OH

 min

Note: Test conditions R
L
 = 1K, C

L
 = 100 pF

CMOS Gate DC Parameters
Symbol Parameter min typ max Units Conditions
V

IL
Input Low voltage 2.0 V

V
IH

Input High voltage 3.0 V
I
I

Input leakage current <1 µA

Absolute Maximum Operating Conditions:
Symbol Parameter min typ max Units Conditions
V

OL
Output Low voltage 0.4 V @ I

OL
 max

V
OH

Output High voltage 4.5 V @ I
OH

 max
I
OL

Output Low current 3.2 mA @ V
OL

 max
I
OH

Output High current 600 µA @ V
OH

 min
C

in
Input Capacitance 20 pF

Note: Test conditions R
L
 = 5K, C

L
 = 150 pF

89 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

Vcc	 Here is how we would determine the answer.
Since the LSTTL V is 0.4 volts and the CMOSR=? 	 OL

CMOS	 V
IL
 is 2.0 volts, the CMOS input low voltage is

compatible with the LSTTL low output voltage.
However, the LSTTL output high voltage of

LSTTL VOH = 2.8 volts is not sufficient to meet the CMOS
input high VIHmin = 3.0 volts. A pull-up resistor is

LSTTL required to allow the LSTTL output to go to a
higher voltage, VIH + Vnoise margin = 3.0 + 0.4 = 3.4 volts.

Figure 3-15: TTL to
CMOS interface example.	 There is no exact solution, but the range of resis­

tors meeting the requirements can be determined.

The lowest resistor value that will work is the value which will source enough
current so the LSTTL output is just able to sink the resistor current plus the
additional LSTTL load when the signal is low and still meets the maximum
output low voltage specification. There is negligible DC current flowing from
the CMOS input. The voltage across the resistor is Vcc – V for the LSTTLOL max.

input, or 5 – 0.4 = 4.6 volts. The current required is I = IILmax + I where IRPU 	 ILmax

is the current coming from the LSTTL input load and I
RPU

 is the current flowing
through the pull up resistor. The current the LSTTL output must sink is the
sum of the I

IL
 of the LSTTL load and the current through the pull up resistor.

The equation is:

I >= I + I = 360 µA + (Vcc - VOL max) / Rmin
OLmin ILmax RPU

R

Solving for R
min

 :

min > = (5 - 0.4 volts) / (3.2 mA - 360 µA) = 4.6 V / 2.84 mA = 1.62 kilohms

R is 1.62 Kilohms
min

This value is also greater than specified as a test load of 1 kilohms.

The maximum acceptable value, Rmax, is determined by the minimum output
high voltage that will guarantee a CMOS high input plus noise margin. The
resistor must be able to supply the LSTTL maximum input high current and
not have too large a voltage drop across it. This will determine the upper limit
for the resistor value.

Specifically, the resistor voltage is:

Vcc - (CMOS V
IH min

 + V
noise margin

) = 5 - (3.0 + 0.4) = 1.6 volts

90 EMBEDDED CONTROLLER
Hardware Design

This voltage is maintained while sourcing the LSTTL IIH max

Solving for Rmax :

R <= 1.6 V / 60 µA = 26.7 kilohms maximum
max

Thus, the acceptable range for the pull up resistor is

1.62 kilohms <= R <= 26.7 kilohmsPU

 of 60 µA.

An acceptable standard value such as 10 kilohms would be appropriate.

Another limit relates to the rise time of the signal under load, due to the R-C
time constant of the pull-up resistor charging the load capacitance, CL. From
the example above, let’s see what the effect of this time constant is on the
selection of the resistor value.

The maximum R value can be approximated by the equation:

R = T / CL where T is the rise time and CL is the total load capacitance

Ignoring the Ioh current of the LSTTL driver, if the circuit above had an allow­
able rise time T = 50 nS and CL = 20 pF, then the maximum R value would be:

R = 50 nS / 20 pF = 2.5 kilohms maximum to maintain the 50 nS rise time.max

So a better choice might be a standard 2.2 kilohm pull-up resistor. Since the
driver will supply some current to charge the load capacitance, this is a fairly
conservative value. We would also have to allow for the additional rise time as
part of the timing analysis for the low-to-high transition.

Worst-Case Timing Analysis Example

Let’s suppose an LSTTL gate is used to enable
the D input of a flip-flop frequency divider, as
shown in Figure 3-16. Figure 3-17 shows a
functional timing diagram for the circuit in IN
Figure 3-16, and Figure 3-18 illustrates a specifi­
cation timing diagram for the same circuit. The Clock

timing of the input signals must conform to the
Figure 3-16: Example of

combined specs of both devices, as defined below: worst-case timing.

> CK

D Q

91 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

Clock

IN

D

Q

Figure 3-17: Functional timing diagram for Figure 3-16.

Clock

Q

IN

D

TPLHTPCKQ TSU

TPLH

TSU

overall

FF
foror

Figure 3-18: Specification timing diagram for Figure 3-16.

 Flip-Flop Timing Specs Gate Timing Specs

Symbol min typ max units

TSU 10 nS

T
H

1 nS

T
PCKQ

15 nS

TPWCK 10 nS

FCLK 50 MHz

Symbol min typ max units

TPHL 1 2 5 nS

TPLH 2 4 6 nS

Test conditions RL = 1K, CL = 100 pF

For the circuit shown in Figure 3-16 and the accompanying specifications,
what is the maximum guaranteed clock rate?

92	 EMBEDDED CONTROLLER
Hardware Design

From the timing figures on the previous page, note the minimum clock cycle
time is defined by the sum of the following times: the time it takes for the
transition from the active edge of the clock for the signal at D to propagate
through the flip-flop, through the NAND gate and the time the signal must be
stable before the next clock. The maximum propagation times and minimum
setup times are used as they are the most severe requirements.

T + T + T = 15 + 6 + 10 = 31 nSPCKQ PLH SU

f = 1/t = 1/31nS = 32.26 MHz

Now let’s determine the setup and hold time requirements for the overall
circuit. The overall setup time is lengthened by the delay of the NAND gate,
therefore the system setup time is the sum of the flip flop setup time and the
worst case propagation delay.

T
SU

(system) = T
PLH

 + T
SU

(flip-flop) = 16 nS minimum

For the overall system hold time, the hold time of the flip-flop is offset by the
minimum delay through the NAND gate, as this is the minimum amount of
time that can be counted on to delay a changing D input to the flip-flop.

TH(system) = TH(flip-flop) - TPHL(min) = 1 - 1 = 0 nS

The delay in the D signal path reduced the hold time requirement from 1 nS
to 0 nS, meaning the input can change at the same time as the clock edge or
later. This is actually an improvement on the performance of the flip-flop by
itself, which requires that the D line be held stable for 1 nS after the clock edge.

Chapter Three Review Problems

For the following problems, refer to the loading example and Figure 3-15.

1.	 If a 10 kilohm pull-up resistor is used, how many additional LSTTL loads
can be connected?

2.	 How many CMOS loads could be added?

3.	 What could be done to increase the number of LSTTL loads?

93	 CHAPTER THREE
Worst-Case Timing, Loading, Analysis, and Design

For the following problems, refer to the timing example and Figure 3-16.

1.	 Using the same D flip-flop specified in the example, how fast could it be
clocked if the /Q output was directly connected to the D input? (That is,
eliminating the gate from the circuit.)

2.	 Under what conditions would the addition of a pull-up or pull-down
resistor increase the fan-out of a logic output?

3.	 What, if anything, can be done to increase fan-out when it is limited by
AC (capacitive) loading?

4.	 A 32-bit CMOS 5 volt microprocessor that has a 32-bit address bus and
a separate 32-bit data bus, and the processor has a 1 nS rise time and
0.5 nH of ground inductance on a board made from glass epoxy material.
The processor has output high and low voltages of 4.5 and 0.5 volts
respectively and drives a capacitance of 100 pF on the address and data
buses. How long can the printed circuit traces be before they must be
considered as transmission lines?

5.	 For the same processor and conditions described in the last problem,
what is the worst-case ground bounce voltage that can be expected?

95 CHAPTER FOUR4

Memory Technologies
and Interfacing

Memory is one of the technology drivers in the integrated circuit business
because the highly repetitive nature of memory arrays. Relatively small
improvements in the design of a memory bit multiplied by the large number
of bits on a chip can make a big difference in chip cost and performance.
Gordon Moore, one of the founders of Intel Corporation, stated memory size
doubles approximately every two years. The generalized version of Moore’s
Law (named after Gordon Moore, a co-founder of Intel who first articulated
it) states that chip complexity doubles approximately every two years. As can
be seen from Figure 4-1, as the resolution of features is reduced by a factor of
1/n, the area required

Integrated Circuit Complexityfor a gate is reduced by as a function of “Feature Size”
1/n2. This exponential
growth in complexity
has continued in spite
of those who have
pointed out many
reasons why it cannot
continue. The sup­
posed barriers have
been overcome so far
by various means to
compensate for the
limits of basic physics,
such as pre-distorting
the master patterns to
compensate for optical
diffraction effects.

Minimum feature
size = 1.0

Original I.C. gate

In addition, the gates

consume less power

Allows four gates

the same area as

Minimum feature
size = 0.5

takes this area
for each gate

Reducing linear
dimensions to
one-half the
original size

to be packed in

one gate took

are faster and

Figure 4-1: IC density versus feature size.

96 EMBEDDED CONTROLLER
Hardware Design

The same technologies that were developed for memories have been applied
to programmable logic and microcontroller chips. Each memory technology
has unique advantages and limitations that the designer must be aware of.
The wide variety of storage concepts and technology are central to the design
of microcontrollers, and are categorized and described in this chapter.

Memory Taxonomy

There are many classes of memory devices, and the emphasis is placed here
on those that are of significance to the designer of embedded systems. As a
result, most of this chapter is dedicated to solid-state semiconductor memory
chips rather than magnetic and optical storage devices.

The most significant distinction between memory devices is how they are
connected to the CPU. There are two ways of connecting memory to the CPU:

• Primary memory the CPU is directly connected to the memory

• Secondary memory: connected to the CPU indirectly

Figure 4-2 illustrates the differ­
ence in the way the two types
are connected to the processor
bus. The CPU is only able to
directly access information
stored in primary memory. All
instructions and data must be
transferred to primary memory
first before the CPU can process CPU has direct CPU accesses
them. An example of primary access to data secondary memory

CPU

Control

Primary
Memory

Secondary
Memory

Secondary
Memory

in primary indirectly through
memory is semiconductor RAM. memory memory control device

The term RAM is frequently,
Figure 4-2: Primary versus secondary memory.

but improperly, used to refer to
primary storage. RAM only specifies the access mechanism (described below)
but is often misused to imply the primary read/write semiconductor storage
from which the CPU fetches instructions and data. Random access methods
may be used in either primary or secondary memories, but are most com­
monly used for the primary storage, which is why RAM has been associated

97 CHAPTER FOUR
Memory Technologies and Interfacing

with primary memories. Because the CPU must access instructions and data
quickly, primary memory must have very fast access time, on the order of tens
to hundreds of nanoseconds or approximately 10-8 to 10-7 seconds, compared
to secondary (disk) memory with memory access on the order of milliseconds
(10-3 seconds).

Unfortunately, semiconductor memory, which is used for primary storage
because of its high speed, is much higher in cost, size, and power per bit of
storage than secondary memories. Semiconductor memory is currently the
most practical mechanism for storing programs and data that are available for
immediate use by the CPU. This is because the primary program and data
memory must operate on the order of the speed of the processor memory
cycles. Otherwise, the memory speed limits the overall system speed, because
the CPU would have to be forced to wait until the memory is ready. One or
more CPU clock cycles would have to be added to each memory access in
order to slow the CPU down to match the speed of the memory. These delay
cycles are referred to as wait states because the processor must wait for one or
more clocks before the memory data is available to the CPU.

Secondary Memory

A separate intermediate device usually controls secondary memory, which is
not directly accessible to the CPU. The device manages the transfer of infor­
mation between the storage device and the processor bus. When the data
stored on a secondary memory device is needed by the CPU, it must first be
moved to primary memory via the controller before the CPU can access it.
Examples of secondary storage include magnetic and optical disk and tape
that are used for large information stores because of their low cost per bit
combined with high density and low power. Because of these differences,
typical microcomputer architectures have about an order of magnitude larger
secondary memories than primary memories. Secondary memories such as
disk drives are most appropriate for storing large programs and data sets that
must be maintained over a period of time. Secondary memories like magnetic
tapes are often used for archival or backup storage because of their very high
density and low cost. Another major advantage to magnetic and optical storage
is that it is non-volatile.

98 EMBEDDED CONTROLLER
Hardware Design

Volatility

Non-volatile memories, such as magnetic disk and tape, maintain the infor­
mation stored in them even when the power is removed. Volatile memories,
however, do lose the information they hold when power is removed from
them. The primary storage read/write RAM in a PC is volatile, which is why
it must be reloaded with the operating system software (referred to as boot­
strapping and loading the operating system) when the power is restored. In
embedded controller designs, non-volatile memory is used to store the programs
and constant data, and volatile memory is used to store the variables and
temporary data.

Column
Select

Random Access Memory
1
1

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

1
0
1

(5)

Row
Select

Column
Select

Rows

Columns

One of Eight Decoder

O
ne

 o
f E

ig
ht

 D
ec

od
er

One Bit

(3)

of Memory

0

RAM is unique because the access

time is essentially independent of

where the data is stored. The ran- Row

dom access method can be likened Select

to the rows and columns of a
spreadsheet, or the “pigeon hole”
style boxes in an old desk. The
specific memory location of interest
is selected by a unique row and
column address as shown in Figure
4-3. The row and column access
can be used to select bits on a
memory chip as well as chips on a
memory board. Random access
memory sizes are specified as 2n x
m, where 2n refers to the number of

Figure 4-3: Random access memory (RAM).

unique locations or addresses and m is the number of bits stored in each
location. A typical memory with 15 address lines and 8 data lines would be
specified as a “32K x 8” or 32 kilobytes, since 215 is 32,768 or 32 kilobytes.
Another memory might be described as “4M x 1,” meaning four million
locations each containing one bit. Eight 4M x 1 memories can be wired in
parallel to provide four megabytes of data for an 8-bit processor, or 16 can be
paralleled to provide eight megabytes of data organized as 4M x 16.

99 CHAPTER FOUR
Memory Technologies and Interfacing

Sequential Access Memory

Sequential access memory has an access time that is dependent upon the
location of the data that is to be accessed. This is best illustrated by using the
most common sequential access device: a magnetic tape. The information is
stored in a serial fashion onto the tape, and the only data that can be accessed
at any instant is the data stored on the tape in contact with the read/write head.
Thus when the head is positioned at the beginning of the tape, the entire
length of the tape must pass by the head before the last item can be accessed.

Direct Access Memory

Direct access memory which is a sort of combination of random and sequential
access methods, is used on disk drives to provide an intermediate access time to
fill the gap between high-speed random and low speed sequential access devices.

The storage medium is disk shaped, and contains a magnetic film for standard
“hard drive” or fixed magnetic disks. Optical disks use an ultra-thin optical
metal film that can be written once with a high intensity laser or read back
using a low power laser. Optical disks that can be erased and re-written use a
magneto-optical film whose optical properties (light polarization angle) can
be changed using a low power laser and a magnetic field.

In each case, information is stored on concentric rings, called tracks on the
disk. The information is stored sequentially on each track as it is on tape,
but the read/write head Disk Format
can be moved to select
the appropriate track.
Disks with multiple
recording surfaces also
have multiple heads
to read each surface,
so they are randomly
accessible by head and
track, and sectors are
sequentially accessed on
each track. Figure 4-4

Highest

Rotation

Gap ID Data ID1 Data1 ID2 Dat2aData Gap Gap Gap Gap
Pre-
Index
Gap

Pre-
Index
Gap

Index Mark

Numbered Track
(Innermost Track)

Track Zero
(Outermost Track)

Sector Sector Sector Sector
n-1 n 1 2illustrates this.

Figure 4-4: Direct access memory.

100 EMBEDDED CONTROLLER
Hardware Design

Another way of classifying memory devices is based on how information is
written into the memory. Read/write memories are memories that can be written
to as easily as they are read from by the processor.

Read/Write Memories

Static RAM or SRAM refers to a volatile semiconductor read/write memory in
which the basic storage element is a flip-flop to store each bit. The flip-flops
are arranged in rows and columns and are available in several organizations.
The flip-flops take about four transistors per bit of storage, so they are generally
about four times less dense than DRAMs that use only one transistor per bit.
While these devices are volatile, they will maintain information as long as
they are powered, unlike dynamic RAM that must be refreshed.

Dynamic RAM or DRAM, is a memory using a capacitor as the storage element.
The presence or absence of charge on the capacitor represents ones and zeros.
Because the capacitors are not perfect, they leak charge and will “forget” in as
little as a few milliseconds if they are left alone, rather like a small child after
being told to clean her room. In order to make the capacitors useful for storage
they must be periodically refreshed. This is done by sensing whether there is
any charge present on the capacitor and recharging the capacitor if there was
charge present when it was sensed.

Refer to Figure 4-5. Charge is stored on the parasitic gate capacitance of a
MOSFET transistor so that only one transistor is required per bit of storage.
The process of reading or sensing the data is destructive in the sense that the
charge representing the data is lost when it is sensed. The DRAM capacitor
must be refreshed whenever it is read, and also periodically to restore the
charge that leaks away. Each row in a DRAM has a sense amplifier and recharge
circuitry designed to read and restore the data on an entire row at once. In order
to refresh the DRAM data, a special abbreviated read cycle must be performed
for each row of the memory. Because of the high density of data storage in
DRAMs such as a 4 megabit device, the memory must have 22 address bits to
select the location to be read or written. Rather than using 22 individual pins
to specify the location, 11 wires are used and the address is latched by the
DRAM in two parts: the row address and the column address. This is referred
to as a multiplexed address Two control signals, row address strobe (RAS) and

101 CHAPTER FOUR
Memory Technologies and Interfacing

column address strobe (CAS,
are used to multiplex the two
11-bit halves of the address into
the DRAM. To simplify the
refresh process, only the row
address is used in a refresh
cycle. Doing this takes advan­
tage of the fact that there is one
sense and refresh circuit for each
bit in a row. The refresh row
address is sequenced through
all possible addresses before
the capacitors can discharge.

Read-Only Memory

One DRAM Bit Cell

SiO2
Gate

Semiconductor. Semiconductor.

Source Channel Drain
ON or OFF

depending on
gate voltage

Semiconductor. Semiconductor.

Gate
SiO2

and must be “refreshed” periodically

Bit

Charge on gate leaks off slowly,

Bucket

Source Channel Drain
ON

Figure 4-5: Dynamic RAM bit storage mechanism.

Read-only memory (ROM) is a class of storage that cannot be erased or modi­
fied by the processor. Typical embedded systems may make use of one or
more of the following types of ROM: mask ROM PROM, EPROM EEPROM
or flash EPROM.

Mask ROM is memory that has been programmed at the time it is manufactured
and can never be changed. The data patterns are defined by the photographic
masks used to define the circuits on a chip when it is being fabricated. Mask
ROMs are used when the programs or data do not need to be changed, when
the production quantities are large, and the cost must be as low as possible.
This is the oldest form of ROM and is still used in high volume applications
because of its very low manufacturing cost. The program must be permanently
defined in advance by including it as part of the master artwork film or “masks”
used to fabricate the chips. It is also the least flexible to change, as a program
change necessitates building and packaging new chips, which can take from
weeks to months to accomplish.

PROM is user-programmable ROM, which is often used as a generic term for
memories that can be programmed one or more times by the user using a
special device called a PROM programmer or PROM burner. This was the first
“field programmable” memory, meaning that it can be loaded with data by the

102 EMBEDDED CONTROLLER
Hardware Design

end user using special programming equipment. Bipolar fuse-link PROMs were
the first in this category, and were programmed by literally burning out fuses
selectively from an array. This is where the term “burning” a PROM came
from. (Up to now, you probably thought “burning a PROM” was some reference
to the Stephen King novel “Carrie,” didn’t you?) Obviously one time program­
mable memory like this was expensive, since it was necessary to discard an
obsolete device, and reprogram a new one every time a software revision
needs to be tested.

Erasable PROM, or EPROM is used most frequently to store permanent data
and programs. It is electrically programmable using an EPROM programmer,
and can also be erased by shining a short wavelength ultra violet light through
the transparent window in the IC package. The entire memory device is erased
since it is not possible to be selective about where the light shines on the chip.
These devices are also referred to as UV EPROMs. A one-time programmable
(OTP) EPROM is simply an EPROM enclosed in a low cost package without
a transparent lid, meaning it cannot be erased once it is programmed. The
storage element in an EPROM is similar to that of a DRAM, as shown in
Figure 4-6. However, the EPROM storage transistor gate is a conductor float­
ing in an insulating SiO2 (quartz) insulator, which prevents the charge from
leaking off. The fact that the
charge is generally guaranteed to
remain for at least ten years in
the absence of power—as long
as the window is covered—
makes this a non-volatile memory.
This would be an ideal storage
mechanism except for the way
that the charge is stored on the
gate. The charge is placed on the
floating gate by a method called
avalanche induced migration.
This programming method is
analogous to routing a river
through the room to fill your cup
with water. A relatively high
voltage, 12 to 25 volts typically,
is used to induce avalanche

One EPROM Bit Cell

Structure

Metal
Metal Gate

Insulating
Material

SiO2

Semiconductor. Semiconductor.

Source Channel Drain
can be ON or OFF

depending on charge gate

Unprogrammed Bit

SiO2

Metal
Metal Gate

Semiconductor.

Insulating
Material

Semiconductor.

Source Channel Drain
OFF or Open due to

lack of charge on gate

Figure 4-6: EPROM storage mechanism.

103 CHAPTER FOUR
Memory Technologies and Interfacing

Chargedcurrent flow across the insulating
Reading a Bit Gate Insulating

region for up to 50 milliseconds, and
some of the charge is stranded on the
floating gate. Figure 4-7 illustrates
the program and read operations of
a typical EPROM.

Semiconductor. Semiconductor.

Metal

SiO2
Metal Gate

Material

Source Channel Drain
ON

EPROM erasure is accomplished by
shining high-energy photons (UV

Figure 4-7: EPROM program and read operation.

light) onto the floating gates for several minutes, as shown in Figure 4-8.
The photons impart enough energy to the trapped electrons to allow them to
escape the gate. The EPROM can

UV light photons give electronsbe erased and reused many times, energy to leave gate Ultraviolet Light
which is important when pro­
grams are in development, and
when a reusable non-volatile
memory is required. Some of the
larger (less than 1 megabyte)
EPROMs are available with a bank
switching system to allow access
to more locations than can be
directly accessed using the address
lines. This is accomplished using
a write cycle to load the upper
address bits into a latch inside
the EPROM.

Flash EPROMs are a variation on
the standard EPROM, except that Figure 4-8: EPROM/EEPROM erasure.

they have been modified so that they do not need to be exposed to UV light
to be erased. Like an EPROM, the entire chip is erased at one time, but the
erasure is performed electrically using a high reverse polarity voltage to remove
the electrons from the gate. They are also easier to program and erase in the
application design using relatively simple additional support circuits.

Semiconductor.

EPROM

 Semiconductor.

Metal

SiO2
Metal Gate

Insulating
Material

 Semiconductor. Semiconductor.

Metal

SiO2

Erasure by Electric Field

EEPROM

++++++++++
+++++++++++
++++++++++

Erasure by UV Light

Charges are drawn off gate
electrically

Charge leaks off gate

Metal Gate

Transparent

High + Voltage

UV Transparent Quartz Lid

EEPROMs, or E2PROMs, are electrically erasable PROMs. They can be erased
and written electrically one byte at a time. The mechanism used is similar to
the EPROM except that the insulating region is made very thin, on the order
of a few angstroms. The charge is transported using an effect referred to as

104 EMBEDDED CONTROLLER
Hardware Design

Fowler-Nordheim tunneling where the insulator is thinned. In an interesting
application of quantum physics, the electrons “tunnel” through the insulator.
The operation is similar to an EPROM except that most types can be erased
and programmed in circuit, using 5 volt power supplies and a standard micro­
processor bus interface. For many of the devices, each byte must be erased by
writing ones to a location before it can be programmed. While these devices
would seem to be nearly ideal as non-volatile read/write memories, they do
have a couple of drawbacks. EEPROM bits have a limited number of write
cycles before they get “stuck” in the programmed state. They are typically
guaranteed for 10,000 to 100,000 write cycles, which would take only a few
seconds if a program gets stuck in a tight loop writing to the EEPROM. This
problem is due to the fact that charge can be trapped in defects in the insulator
in the gate region resulting in some bits getting “stuck” in the programmed
state. The other problem is that they are slow to write, typically taking many
microseconds or even milliseconds to erase and write, compared to 100 nano­
seconds typical of SRAM.

Small EEPROMs are available with a serial interface so that they will fit into
small (8-pin), low cost packages. They are particularly useful in embedded
systems for storing configuration data to replace switches and jumpers. They
are significantly slower than standard memories due to the serial interface,
and are usually accessed using software to manipulate the serial lines directly.

Other Memory Types

Battery-backed CMOS SRAM or NVRAM (non-volatile RAM), is a device
consisting of a low power CMOS SRAM, a battery, and control circuitry to
maintain the data in the RAM using the battery when the external power is
off. These devices come in two forms: an oversize IC socket containing the
battery and control circuit into which a CMOS RAM is inserted, and a single
package containing all three components with the RAM permanently installed.
The advantages of these devices are that they have the same ease of read and
write as a standard RAM, unlimited read/write cycles, and non-volatility.
Disadvantages include the environmental and storage life limitations imposed
by the battery, and delayed access to the data during power application. Write
cycle access is disabled for a fixed period of time after the power supply reaches
a predetermined voltage to prevent spurious write signals from corrupting the
data while the processor is in the process of initializing itself. As a result of

105 CHAPTER FOUR
Memory Technologies and Interfacing

this initial period when the memory is “write-protected,” the processor cannot
store data such as subroutine and interrupt return addresses on the stack. This
can result in unpredictable operation unless the software has been designed
to allow for the necessary delay after power up to guarantee that the memory
will accept a write cycle.

Ferro-electric RAMis a semiconductor memory with a combination of fast
access, unlimited write cycles, and non-volatility. This is a relatively new
and unproven type of device that stores information using a material that
can change its properties and be sensed electrically, but retains its data like
magnetic storage when power is removed. The cost of these devices is high
relative to the other types, however, limiting its potential applications.

The proliferation of memory technologies is due to the compromises in current
memory devices. The ideal memory would be low cost, high density, random
access, fast access time, read/write, and non-volatile, with unlimited read/write
cycles. Each of the memory devices discussed is optimized to incorporate several
of these ideal characteristics at the expense of the others. Because of these com­
promises the designer most often uses multiple types of devices to meet conflicting
memory requirements. Probably the most common solution for embedded
processors is the use of EPROM to store programs and constant data, and SRAM
to store read/write data such as variables and stacks. EEPROMs are becoming
more popular in embedded designs because they allow storage of information
that is infrequently updated such as calibration and configuration information.

JEDEC Memory Pin-Outs

RAM, ROM, EPROM, and EEPROM pin-outs have been standardized to
make it easier to design a microcomputer memory interface. The JEDEC
(Joint Electronic Device Engineering Committee) standard defines the pin-out
of the devices so that various types of memories can be installed at the same
site in a circuit board with a few jumpers. This standard encompasses 24-,
28-, and 32-pin DIP devices, as well as equivalent surface mount packages.
As a result, the data lines, and many of the address and control lines, are
unchanged for a wide range of device sizes and memory types.

Figure 4-9 shows the pin assignments for a 32 kilobyte EPROM in a 28-pin
DIP package and a 128 kilobyte static RAM in a 32-pin DIP package. Note

106 EMBEDDED CONTROLLER
Hardware Design

the commonality of the two assignments. Both types of devices can be accom­
modated in the same pattern on a circuit board by connecting the common
pins directly to the appropriate signals, and by providing movable jumpers
or programmable logic to allow use of either type of memory. This particular
pin-out pattern, or “footprint,” is standardized by JEDEC and is referred to as
the JEDEC 28- or 32-pin memory footprint.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

Vpp
A16
A15
A12
A7
A6
A5
A4
A3
A2
A1
A0

I/O 0
I/O 1
I/O 2
GND

VCC
WE
A17
A14
A13
A8
A9
A11
OE
A10
CE
I/O 7
I/O 6
I/O 5
I/O 4
I/O 3

28F020
28F010
28F512
28F256

N/C
N/C N/C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

Vpp
A16
A15
A12
A7
A6
A5
A4
A3
A2
A1
A0

I/O 0
I/O 1
I/O 2
GND

VCC
PGM
A17
A14
A13
A8
A9
A11
OE
A10
CE
I/O 7
I/O 6
I/O 5
I/O 4
I/O 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

27C020
27C010
27C512
27C256

Vpp N/CVCC

OE OE/Vpp

Flash Memory Connections EPROM Memory Connections

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

A18
A16
A14
A12
A7
A6
A5
A4
A3
A2
A1
A0

I/O 0
I/O 1
I/O 2
GND

A15
A17
WE
A13
A8
A9
A11
OE
A10
CE

1
2
3
4
5
6
7
8
9

10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

4M RAM

1 M RAM
256K RAM

N/C

VCC CE2

VCC

Figure 4-9: I/O 7
I/O 6

JEDEC memory I/O 5
I/O 4footprint pattern. I/O 3

SRAM Pin Connections

Device Programmers
A special device is required in order to program most types of PROMs because
of their signal timing and voltage requirements. The PROM programmer or
PROM burner programs a device with the data pattern from a master PROM,
a serial port, or a disk file. “PROM burner or blower” is a term that originated
when programming fuse-link PROMs required that the fuse be burned or blown
to program each bit in the memory. Device programmers come in two forms:
a desktop instrument with serial I/O ports and disk drive for data input, or a
PC compatible plug-in card. The desktop units are more versatile, but the

107 CHAPTER FOUR
Memory Technologies and Interfacing

plug-in cards are much less expensive. The most flexible units in both catego­
ries have a programmable power source and sense circuit on each device pin,
and the least expensive are those that program only one type of device. Some
programmers are also capable of programming PLDs (programmable logic devices)
in addition to standard PROMs.

The procedure for programming an EPROM that has been used before
is typically:

1) Remove the label covering the quartz window on the EPROM.

2) Place the EPROM in a UV EPROM eraser for 20 minutes to erase
existing data.

3) Turn on the EPROM programmer.

4) Select the type of device to be programmed.

5) Load the data pattern into the programmer from a computer using a
serial port.

6) Put the EPROM into the appropriate socket in the programmer.

7) Start the programmer, and wait anywhere from few seconds to
twenty minutes.

8) The programmer indicates that the EPROM is properly programmed.

9) Remove the EPROM and cover the window with an identifying label.

10) Install the EPROM in the circuit board where it will operate.

Procedures for each programmer vary in detail, but the overall process re­
mains the same. The photo below shows what one type of programmer looks
like. A zero insertion force (ZIF) integrated circuit socket is used to make it
easy to insert and remove the device and to prevent damage to the pins on the
device. Programmable devices in surface mount packages will also require the
use of a special adapter. Programmers for memory and programmable logic
devices are available at prices ranging from hundreds to thousands of dollars.

Memory Organization Considerations
A generic memory device is organized as a number (N) of locations multi­
plied by megabits per location. Here are two examples:

• “128K x 8” SRAM representing a chip with 128,000 locations of eight bits
each = 128 kilobytes of storage capacity.

108 EMBEDDED CONTROLLER
Hardware Design

• “1M x 1” DRAM with 1 million locations each with one bit = 1 megabit
of storage.

Note that both of these memories have one million bits of storage; they are just
organized differently. Figure 4-10 illustrates this. The SRAM has eight bits per
location and is referred to as a byte-wide memory, and the DRAM has one bit
per location. The SRAM chip has log2(128 kilobytes) = 17 address bits numbered
A0-16 and eight data bits numbered D0-7, where A0 and D0 are the LSBs (least
significant bits). Because the address bits are multiplexed to share address pins,
the DRAM has log2(1M) = 20 address bits or log2(1M)/2 = 10 address pins.

Column
Address
Decoder

Array

and
Control

Data
Buffer

Row
Address
Decoder

Memory

Timing

A10 – A19
AB –
 A16

D0 – A0 –A0 –

Column
Address

Latch and
Decoder

Array

and
Control

Data
Buffer

Row
Address

Latch and
Decoder

Memory

Timing

D
A7 D7 A9

CE RAS

WE CAS

OE WE

128K x 8 SRAM 1M x 1 DRAM

Figure 4-10: Two different memory organizations for 1 megabit memory.

Byte-wide memories are more common in microcontroller designs due to their
simplicity and the wide variety of memory technologies available in standard
JEDEC pin-out packages. While byte-wide SRAM memories have a higher
cost per bit-on-a-chip basis than DRAMs, they do not require any support
circuitry for refresh and address multiplexing. For a system incorporating a
small amount of SRAM, the overall cost and complexity are less than they
would be for a comparable DRAM design. For RAM memories consisting of
many chips, the DRAM’s lower cost per bit outweighs the cost of the support
circuitry. In order to increase density, DRAMs are often packaged in SIMM
(single in-line memory module) form, which is essentially a very small circuit
board containing eight or nine DRAMs which are then plugged into card edge
sockets on the main board. This concept is very popular for PCs, workstations,
and other general-purpose designs with requirements for large RAM storage.

109 CHAPTER FOUR
Memory Technologies and Interfacing

Parametric Considerations
Timing parameters were discussed in detail in Chapter Three. However, there
are several that are unique to memory devices. These include access time, cycle
time, and, in the case of DRAM, refresh interval.

Figure 4-11 shows a timing diagram illustrating memory read cycle timing
parameters. These access times include:
• TAA (address access time): Valid Address to valid data delay
• TOE (output enable access time): Output Enable (OE) to valid data delay
• TCE (chip enable access time): Chip Enable (CE) to valid data delay

TOE

TAA

Chip
Enable

Output
Enable

Address

TCE

Data

Figure 4-11: Memory read cycle timing parameters.

Figure 4-12 shows a timing diagram illustrating memory write cycle timing
parameters. The pulse width, setup, and hold times include:
• T

WP:
Write pulse width

• T
AS:

Address setup time
• T Address hold time

AH:

• T
DS

: Data setup time
• T : Data hold time

DH

Chip
Enable

TCETWP

TAS

TDS

Enable

Address

Data

TDH

Floating

TAH

Write

Figure 4-12: Memory write cycle timing parameters.

110 EMBEDDED CONTROLLER
Hardware Design

In addition to the memory timing specs shown above, some memories, such
as DRAM, have additional constraints as follows:

Cycle times

T

T
RC

 (read cycle time): how closely read cycles can be spaced

WC (write cycle time): how closely write cycles can be spaced

Read-modify-write cycle time is a special combined read/write cycle to the
same address (e.g. increment a memory location)

DRAM Refresh Cycle
TREF: the maximum time between refresh/read/write cycles before DRAM data
loss can occur

One of the DC characteristics of interest in an embedded system is the power
consumption, particularly in a battery-operated design. Most static memories
have low power or power-down modes activated by disabling the chip select or
chip enable line. True CMOS SRAMs have typical power down supply currents
in the low or sub-microampere range, allowing their data to be maintained
using a battery while the main power is off as in an NVRAM. Some SRAMs are
advertised as CMOS, even though they have some NMOS circuits internally
to improve speed. These “mixed MOS” designs draw significantly more power
and are not usually appropriate for typical battery operated applications.

Practical examples of actual memory specifications used in design of an
embedded system can be found in Chapter Six.

Asynchronous vs. Synchronous Memory

An asynchronous memory is one that does not require any clock signals and
delivers its output with a delay of one access time (the internal memory logic
propagation time) after the address and control lines stabilize. Most SRAMs,
like the SRAM described above, are asynchronous, but a few are synchronous
and have clocks for internal latches to store the address and write enable
signals. DRAMs are synchronous because they require RAS and CAS strobes
to load the internal data latches. Generally asynchronous parts are easier to
design with because of simpler timing constraints and direct compatibility
with most processor buses.

111 CHAPTER FOUR
Memory Technologies and Interfacing

Error Detection and Correction

Error detection circuitry stops an operation before erroneous data is used, such
as a parity error trap. Error correction on the other hand, uses redundant data
to reconstruct the original data to be used when operation must continue with­
out interruption. Error detection and correction are not often used in small
systems because of the relatively low probability of error and high cost of error
detection and correction hardware. In systems like PCs and workstations,
larger RAM memories result in the need for error detection as a minimum,
and error correction in systems requiring high reliability. In most PCs, a ninth
bit in each byte stores parity information, and if there is a parity error, an
interrupt trap will stop operation and display an error message.

There are two types of errors: hard errors and soft errors. If an error occurs
only once, due to noise or a transient error condition, it is referred to as a soft
error. A hard error is one that always occurs, such as a read/write memory bit
that is stuck in one state and can’t be changed.

Error Sources

Hard errors are usually caused by a permanent hardware defect, while soft
errors can be caused by any one of several events, including timing errors,
synchronization problems, software bugs, or even the passage of a charged
subatomic particle resulting from the decay of trace radioactive materials
flying through an IC. As a designer of an embedded system, it is necessary to
allow for the occurrence of these events, and minimize the severity of their
effect on the overall system. In order to accomplish that goal, it is necessary
to detect the occurrence of such an event as a minimum.

Confidence Checks

The confidence check is frequently used to detect these errors, and can be
modified to correct certain subsets of the errors as well. Probably the most
well known of the detection techniques is parity. Its widespread use is due to
the simplicity of its implementation. In the most common form, a single bit is
added to every word, containing the parity check bit. The parity bit is set or
cleared depending on whether there are an even or odd number of ones in the

112 EMBEDDED CONTROLLER
Hardware Design

original word to be checked. Whenever the data is handled, the contents are
checked against the parity bit. If any one bit in the word has changed, then
the parity of the data will not match the parity bit accompanying the data,
indicating an error. For a single byte or word, this is usually a reasonable
assumption, however for a large block of data, it is not reasonable. Horizontal
parity refers to the parity of a single word of data, while vertical parity refers to
the parity of one bit position in multiple words. They are combined to form
block parity, which assigns one parity bit for each word horizontally and one
parity bit for each bit position in the block of words.

Block parity allows the detection and correction of single bit errors. Since a
single bit will cause one horizontal and one vertical parity error to occur,
correcting the bit in error requires only complementing the bit belonging to
the row and column corresponding to the parity errors. Note that multiple
errors may not be corrected or even detected, depending on where they occur.

Here is an example using odd parity:

data: Horizontal parity:

1 0 1 1 p=0 odd horizontal parity
1 1 1 1 p=1 even horizontal parity +1 = odd parity
1 0 0 1 p=1 even horizontal parity +1 = odd parity
1 0 1 1 p=0 odd horizontal parity
1 0 0 1 < The odd vertical parity bits for the four words above

Another version of parity checking is called Hamming code after its inventor,
R.W. Hamming. It is a code in which multiple parity bits are appended to each
word in such a way that a single bit error will generate a group of parity bits
having a value equal to the data bit number in error.

A checksum is another technique that can be used to detect an error in a
group of characters. The idea is simple enough: sum all the data words and
keep the least significant bits of the sum. (For you math majors, that’s sum­
ming the data modulo 2n, for n bit words.) Checksums are frequently used by
various types of memory and logic device programmers to verify that the
desired program has been “burned” into the device. A checksum will detect
some, but not all, of the common errors in a block of data. For example, it
won’t detect errors due to the data being stored in the wrong sequence, since
the sum of the numbers is the same regardless of the order. A practical

113 CHAPTER FOUR
Memory Technologies and Interfacing

example is when a 16-bit CPU’s program is burned into two 8-bit memories,
one containing the lower byte and one containing upper byte of the instructions.
When the bytes in the block of memory are summed, the answer is the same,
even if the two devices are swapped! Thus, a serious and common error
would not be discovered.

The CRC (cyclic redundancy code) is used to detect changes within a block of
data or its order. The CRC is based on a polynomial that is calculated using
shifts and XOR (exclusive OR) logic to generate a number that is dependent
on the data and the order of the data. The detailed operation of a CRC is
beyond the scope of this book, but is based on the same polynomials used
for generating pseudo-random numbers. It is commonly used for checking
blocks of data on magnetic storage devices and communication links.

Memory Management

In order to understand what memory management is, it’s helpful to understand
the motivation behind its use. There are two kinds of memory management:
memory address relocation and memory performance enhancement. They
are often used in conjunction, as is commonly done in personal computers.
This section covers the performance enhancement aspects, while the address
relocation issues will be covered in Chapter Six.

The differences between different storage technologies, in terms of performance
and cost, vary over many orders of magnitude. For example, semiconductor
memory devices have access times that are many orders of magnitude faster
(nanosecond vs. millisecond access time) than that of magnetic disks. Of
course, magnetic disks also have a cost several orders of magnitude less than
semiconductor memory on a cost per bit basis. This disparity in price and
performance has lead to the idea of using small, fast memories to store the
most frequently accessed subset of the complete collection of data present
in a larger, slower memory. This technique of buffering, often referred to as
caching memory contents in a fast memory, is essentially similar whether it is
applied to the memory attached to a CPU or the magnetic or optical storage
mechanisms. In fact, there may be several layers of caching in a given system,
starting with the smallest, fastest memory closest to the CPU, followed by
slower but larger memories.

114 EMBEDDED CONTROLLER
Hardware Design

Memory price is inversely proportional to speed, as indicated below:

Memory Relative Access Relative

type size(Bytes) Time(Sec) cost/byte

Tape 1010 10 1
Disk 109 10-3 10
DRAM 106 10-7 102

SRAM 105 10-8 103

Cache Memory

When a high speed memory is used to provide rapid access to the CPU for
most frequently used portion of main memory, it is referred to as a CPU cache
memory. Likewise, when the main memory is used to provide rapid access to
data stored on a disk, it is referred to as a disk cache.

The objective of these approaches is to maximize the likelihood that most
pieces of data will be found in the small and fast memory most of the time,
thus reducing the average effective access time. The object is to succeed at
finding most data in the small fast memory most of the time, minimizing
the number of accesses to the big slow memory. Fast SRAM is used as a fast
temporary buffer (memory cache) between main memory and the CPU.
Main memory DRAM is used to buffer disk data (disk cache). Most hard
disk drives also have some internal fast semiconductor RAM to cache data
as it is being transferred to and from the disk.

Virtual Memory

Disk storage can be used to emulate a larger primary memory than is actually
available. Demand paged virtual memory provides an apparently large primary
memory by swapping pages of data between real primary memory and disk.
This is a combination of hardware for translating logical (virtual) addresses,
moving pages as needed, and operating system software to determine where
and when pages should be kept and detect access attempts to pages which are
not in primary memory.

When address relocation mechanisms are combined with disk caching and

115 CHAPTER FOUR
Memory Technologies and Interfacing

special system software, it is possible to make the main memory appear much
larger than it actually is to a program running on this type of machine. When
the program attempts to access a location that is not present in the main
memory, the hardware and software redirect the memory reference to a real
block of memory, after the required data is loaded from disk. Thus the appli­
cation program is presented with a virtual memory that is significantly larger
than the actual physical main memory. This has the effect of simplifying the
code, since all data can be referenced by a single address, rather than selecting
a file, track, or sector on a disk.

CPU Control Lines for Memory Interfacing

Some CPUs generate signals for memory timing and synchronization with
devices having various access times using a technique that generates delay
cycles for slow memories, referred to as wait states. The 8051 processor used in
this text does not use or generate wait states for simplicity. The Dallas 80C320
series of high speed microcontrollers incorporate a software-controlled
mechanism for generating wait states. These extended memory cycles allow
the processor to work with slower memory and peripheral chips.

Chapter Four Problems
1.	 What is the largest capacity SRAM that will fit in a 32-pin package?

2.	 What is the largest ROM that will fit in a 32-pin package?

3.	 Using 4M x 4 DRAMs, how many chips will be required to implement
a 16 megabyte memory organized in 32-bit words?

4.	 What restrictions must be considered, when writing software to program
an EEPROM device?

5.	 What restrictions are imposed when writing to flash EPROM?

6.	 What would you expect to read from a blank EPROM, if its data storage
element is an N-channel FET that is connected with its source grounded
and the drain connected to an output pin and a pull-up resistor?

117 CHAPTER FIVE5

CPU Bus Interface
and Timing

The central processing unit (CPU) is the key part of a microcomputer, both from
the functional aspect and from the design procedure facet. This is because the
key control signals originate from the CPU, driving most of the timing, load, and
functional characteristics of the bus interface that all other devices must be
compatible with. The processor controls the data transfers on the bus on a cycle-
by-cycle basis, fetching instructions, reading and writing operand data. Let’s
begin by examining how the CPU reads data from and writes data to memory.

Read and Write Operations
Refer to Figure 5-1 as you read through the following steps in a memory
read operation:

1) The CPU selects the memory location by driving the address on the address bus.

2) Control lines are driven by the CPU to indicate the address space to use, such
as program memory, data memory, I/O, or special cycles such as interrupts.

3) Read is activated on the control bus by the CPU to indicate that the
memory can drive the data bus with the contents of the selected location.

4) The memory drives the contents of the selected location on the data bus.

5) The CPU deactivates Memory Read Cycles
the address and 2 Instruction Fetch 2 Data Fetch Cycle

control lines, Status Program Memory Cycle Data Memory Cycle

3 3turning off the
memory drivers.

RD 5
1 1

Address

Figure 5-1: Generic Bus

CPU reading instructions Data

Opcode Operand
4 4

and data from memory. Bus

Program Memory Address Data Memory Address

5

118 EMBEDDED CONTROLLER
Hardware Design

Refer to Figure 5-2 as you read through the following steps in a memory

write operation:

1) The CPU selects the memory location by driving the address on the ad­

dress bus.
2) Control lines are driven by the CPU to indicate the address space to use.
3) The CPU drives the data to be written on the data bus.
4) Write is activated on the control bus by the CPU to indicate that the data

on the data bus should be written into the selected location.
5) The CPU deactivates the address, data, and control lines.

2

Memory Write Cycles
Data Store Cycle 2 Data Store Cycle

Status

WR

Address Bus

Data Bus
3 3

5 5
1 1

4 4

Data Memory Address Data Memory Address

Write Data Write Data

Data Memory Cycle Data Memory Cycle

Figure 5-2: Generic CPU writing data to memory.

Address, Data, and Control Buses

2

During normal operation, the CPU drives the address bus with the location to
be transferred to or from the CPU. Addresses generally refer to memory locations
or I/O locations. The data stored in those locations is usually eight bits (a byte),
16 bits, or 32 bits depending on the processor. Most microcontrollers use byte
addressing, meaning that each address is a pointer to an 8-bit piece of data. Most
8-bit and virtually all 16- and 32-bit processors can also address and manipulate
data in 16- and 32-bit pieces. Directly accessible addresses are those that the CPU
can access in a single cycle using the address bus. If a processor has N address
bits, then it can directly address 2N locations, starting at location 0 and increas­
ing to location 2N-1. Typical processors may have 16-, 20-, 24-, or 32-bit address
buses. A byte addressing, 16-bit processor can address 216 locations, or 65,536 =
64 kilobytes. Likewise, a processor with a 20-bit address bus can directly access

20 locations, or one megabyte. Some locations of memory may not be directly
accessible by the CPU, meaning that the CPU must use multiple cycles to
access one memory location, usually under software control. This technique,
sometimes referred to as bank switching, is the so-called “expanded memory
above one megabyte in the PC, which uses an 8088 CPU with 20 address bits.

119 CHAPTER FIVE
CPU Bus Interface and Timing

The 80286 CPU has 24 address bits allowing direct addressing of 224 or 16
megabytes. The 80386 and higher processors have a 32-bit address space,
addressing up to 232 or 4 gigabytes. Some processors use a subset of the
address lines for I/O. If the processor instructions use a 16-bit address field
in the I/O instructions for example, then only 216 I/O locations are accessible.

The data bus, driven by the CPU during write cycles and by other devices
during read cycles, transfers instructions and data in and out of the CPU. The
width of the data bus, among other things, determines the amount of data that
can be transferred on the bus. This data throughput is referred to as the bus
bandwidth and is usually expressed in bytes per second. If a bus supports one
transfer per microsecond, an 8-bit bus has a one megabyte per second band­
width, a 16-bit bus has a two megabytes per second bandwidth, and a 32-bit
bus has four megabytes per second bandwidth. In the case of an 8-bit bus and
a period T =1 microsecond (µS), then f = 1/T = 1 MHz and, for one byte per
cycle, the result is one megabyte per second or eight megabits per second.

The control bus, normally driven by the CPU, determines what type of cycle
is to take place and when the data will be present on the bus. In the case of a
processor with a multiplexed address and data bus, some or all of the data bus
is multiplexed or shared with the address bus. An additional signal is provided on
the control bus to enable an address storage latch to hold the address informa­
tion at the beginning of a transfer cycle. Bus cycles on a multiplexed address/data
bus system, as shown in Figure 5-3, are identical to those illustrated previously
except for the addition of address information on the data bus at the beginning of
a cycle, and an address latch control signal as shown in Figure 5-3. The 8051 has
a multiplexed bus cycle.

Multiplexed Bus Cycles

Data Fetch Cycle Data Store Cycle

Status

RD

WR

ALE

Latch Output

Address/Data Bus

RD Address

RD Data

WR Address

RD Cycle

WR Cycle

RD Address

Data Memory Cycle Data Memory Cycle

Wr Addr. WR Data

Figure 5-3: Multiplexed address/data bus cycles.

120 EMBEDDED CONTROLLER
Hardware Design

As soon as the address latch enable (ALE) is high, the address latch allows the
multiplexed address from the address/data bus through to the latch output.
When the ALE signal goes low, the address remains frozen on the latch output,
and the CPU can remove the address lines from the bus and begin a data transfer.

The address latch must be a transparent latch with active high enable, such as
the 74xx373 device. Figure 5-4 shows a typical arrangement. It is important to
recognize that a transparent latch operates differently than a clocked register.
As long as the ‘373 latch enable input is high, the latch Q output follows the
D input. As soon as the latch enable goes inactive, the latch Q outputs freeze.
This is analogous to the way a VCR allows a continuously changing signal
show on the display until the pause button is pushed. This is in contrast with
edge sensitive devices, such as the ‘374, which only updates the Q outputs at
the rising edge of the clock. The ‘374 is analogous to a flash still camera, which
captures the input at the instant that
the flash occurs. If the ALE signal was
inverted, the ‘374 latch would sample
and hold the address at the end of the
ALE pulse. While this could function
correctly, it would delay the availa­
bility of the address to the memory
devices, leaving less time for them

LatchCPU

ALE EN

D0..15 Q0..15

AD0..15

(e.g. '373)

Transparent

Address Bus

A0..15

Data Bus

D0..15

to access the addressed location. Figure 5-4: Address demultiplexing with a latch.

Address Spaces and Decoding
Processors, depending upon the particular architecture, may have several
separate address spaces, such as the following:

• program memory address space

• data memory address space

• input/output device address space

• stack address space

Depending on the processor, these may be completely separate, overlapping,
or all-in-one address space. When these are separate spaces, the processor has
separate control signals to indicate which address space is to be used for data
transfer. This may be done with a separate signal line that goes active when a
particular space is being addressed, such as a program fetch denoting that the

121 CHAPTER FIVE
CPU Bus Interface and Timing

data should be transferred from a program memory address. The address
space selection may also be performed using several status lines that, when
decoded, define the appropriate transfer as in the case of the Intel 80x86
family. When there are separate address spaces, as in Harvard architecture
CPUs like the 8051 family, there will be more than one unique location with

CPU

Address
Bus

Address
Bus

Enable
Address
Data

Data

Enable
Address
Data

Program

I/O

Data

Program
Instruction

Fetch

Figure 5-5: Separate address spaces

the same address. The status and control lines are needed to
single out the appropriate location as shown in Figure 5-5.

Memory Memory

Transfer

Transfer
Input/Output

Devices
Enable
Address
Data

Some processors, such
as those in the Motorola
680x0 family, have a
single address space for
all purposes, including
I/O. Dedicating part of
the memory address
space to I/O is referred
to as memory mapped

for program, data, and I/O. I/O. Even processors
that have separate I/O instructions and address space may have some memory
mapped I/O by dedicating some of the memory address space to I/O devices.

The various address lines and control lines are decoded to provide individual
chip select signals for the various memories and I/O chips. This is the purpose
of the address decoder. A standard n-line to 2n-line decoder is sometimes used to
decode the address lines. A typical device is the 74LS138, a 3-to-8 line decoder
that drives one of eight output lines low, depending on the three bit binary
number on the input. For
example, with 16 address
lines there are 64K unique
locations in a memory
address space. This would
require eight memory ICs
if each one contains 8K

Enable

A0 .. 12

Eight
Program
EPROMs

8031

Enable

EPROM 6

Enable

EPROM 5

Enable

EPROM 4

Enable

EPROM 3

Enable

EPROM 2

Enable

EPROM 1

Enable

EPROM 0

Eight EPROMs
each 8K x 8

EN

A
B
C

A13
A14
A15

3
A13 ..15

16

A0 ..15
Address
A0 ..15

PSEN 7
6
5
4
3
2
1
0

74LS138
3:8 Decoder

Figure 5-6: Address
decoding example.

EPROM 7

locations (64K locations
divided by 8K locations
per chip = 8 chips). By
connecting the three
decoder inputs to the
most significant bits of

122 EMBEDDED CONTROLLER
Hardware Design

the address bus and each of the eight decoder outputs to a memory IC chip
enable, one of the eight memory devices will be selected for any given ad­
dress. Decoders also have enable inputs that can be used to enable the outputs
only for a selected address space such as memory or I/O. The example in
Figure 5-6 shows an 8031 with eight program EPROMs.

Address Map
In order to describe the address decoding of memory and I/O clearly an address
map (also referred to as a memory map) table is used to specify which devices
respond to a particular range of addresses in a given address space. The purpose
of an address map is to clearly define the range of addresses that each memory
or I/O device occupies in the address space. A separate map is used for each
address space in processors that have more than one address space. For example,
the 8031 has a factory defined map of the internal data memory address space,
another map for program memory, and a third for external data memory. It
also helps to define which memory space any given device resides in. As an
example, the address decoding table for Figure 5-6 is shown in Table 5-1:

Address Range
(hex)

Address bits
A15 A14 A13

Decoder Ouputs
76543210

Chip Select Active
for Memor y IC

0000 - 1FFF 0 0 0 11111110 EPROM 0

2000 - 3FFF 0 0 1 11111101 EPROM 1

4000 - 5FFF 0 1 0 11111011 EPROM 2

6000 - 7FFF 0 1 1 11110111 EPROM 3

8000 - 9FFF 1 0 0 11101111 EPROM 4

A000 - BFFF 1 0 1 11011111 EPROM 5

C000 - DFFF 1 1 0 10111111 EPROM 6

E000 - FFFF 1 1 1 01111111 EPROM 7

Table 5-1: Memory map for Figure 5-6.

The same decoding technique can be applied to I/O devices to select one of
several devices. In the case of an I/O decoder connected to a processor with a
separate I/O address space, the decoder’s enable input would be controlled by
the CPU I/O control line. Whenever an I/O cycle occurs, the I/O device address
is presented on the address bus and the I/O control line is activated. This causes
one of the decoder outputs to go active and select an input or output port. In

123 CHAPTER FIVE
CPU Bus Interface and Timing

the case of memory mapped I/O, the decoder outputs would go to both
memory and I/O devices. An I/O address map is used to specify the location(s)
in I/O address space that each device will respond to. The map may also specify
if the location is read only, write only, or read/write. This is because I/O device
addresses are not always read and write. As an example, an output port that
drives some LEDs would be an output only or “write only” port. Microcon­
troller chips usually have some dedicated input bits and output bits as well as
some general purpose I/O port bits implemented directly on the chip, which
are usually accessible by reading or writing special register addresses. Micro­
processors and microcontrollers with external buses can also have memory
mapped I/O. The example below shows a one bit input port and a 1-bit output
port mapped into the external RAM space along with six 8Kx8 RAMs.

The example address map in Table 5-1 and decoder circuit in Figure 5-6
illustrate complete address decoding. That is, there is one device mapped to
each block of addresses in such a way that all the addresses map to one and
only one unique set of memory locations. Each of the eight memories containing
eight kilobytes of memory maps to one of the eight regions of eight kilobytes.
There are no unused addresses, and there are no duplications. If all possible
addresses are decoded, but some are not used, then it is possible to expand the
memory available by using the available memory address ranges for additional
memory. If any device is decoded in such a way that it appears more than once
in the address space, then it is referred to as partial address decoding. This derives
from the fact that not all the address signals are used to determine which device
should be enabled. This is often done to reduce the complexity of the decod­
ing circuits, at the
expense of future
expansion options.

In the address

decoder shown in

Figure 5-7, the

I/O addresses are

partially decoded,

resulting in a

range of addresses

that enable a

single device

(the I/O port). Figure 5-7: Memory mapped I/O in the 8031 external memory space.

8031

LED

Chip Select

EN

A
B
C

A13
A14
A15

16

A0 ..15
Address
A0 ..15

RD

7
6
5
4
3
2
1
0

74LS138
3:8 Decoder

WR

Output Port

Input Port3
A13 ..15

SW1

+V

+V

D0

D0 D Q

C

RD

WR

To RAM

To RAM OE

To RAM WE

124 EMBEDDED CONTROLLER
Hardware Design

Note also that two separate address ranges have been used, one for the input
port and one for the output port. In practice, it is possible to have the input
and output ports respond to the same address by using the read line for input
cycles, and the write line for outputs.

Address Range
(hex)

Address bits
A15 A14 A13

Decoder Ouputs
76543210

Active Select:
Memor y I/O

0000 - 1FFF 0 0 0 11111110 RAM 0

2000 - 3FFF 0 0 1 11111101 RAM 1

4000 - 5FFF 0 1 0 11111011 RAM 2

6000 - 7FFF 0 1 1 11110111 RAM 3

8000 - 9FFF 1 0 0 11101111 RAM 4

A000 - BFFF 1 0 1 11011111 RAM 5

C000 - DFFF 1 1 0 10111111 Output Port

E000 - FFFF 1 1 1 01111111 Input Port

Table 5-2: External data memory map (8031 external memory space).

The decoder will select the input port at any address in the range E000 through
FFFF hex. That means that the single input port bit takes up 8K address loca­
tions, all reading the same input port. This decoding technique is partial address
decoding because only the three most significant address bits are decoded for this
input port, and the rest of the address lines are effectively “don’t cares.” This may
seem wasteful of address space, but it reduces the amount of decoding circuitry
when it is not necessary to decode all the unique addresses individually. The
memory map of the external data memory address space is shown in Table 5-2.

Chapter Five Problems
1. If the design of Figure 5-7 needs to be changed to eliminate the duplication

of addresses caused by partial address decoding, how many additional
input signals would be required for the decoder?

2. The 8031 CPU has 16 address lines. How much external memory can be
attached to it without resorting to any memory extension mechanism?

3. If all bits of Port 1 on an 8031 are used to select external data memory in
one of 256 “banks,” what is the maximum amount of external data
memory that can be accessed?

4. What is the answer to life, the universe, and everything?

125 CHAPTER SIX6

A Detailed
Design Example

In this chapter, we will take a detailed look at the design and analysis of a
simple microcontroller project. This chapter will illustrate the interactive
nature of the design process. First, the preliminary design is analyzed for
limitations and violations of the timing requirements for the various chips.
Then modifications and additions to the design are made to improve the
performance based on the analysis. The modified design is then verified for
conformance to the various component specifications. This iterative process
begins with a simple block diagram showing the components of interest and
progresses to detailed timing diagrams, specifications, and timing analysis.

The Central Processing Unit (CPU)

The process of designing an embedded microcomputer system is mostly
independent of the particular CPU that is used. The example design of this
chapter is a relatively simple one that illustrates the design and analysis process
in enough detail to show what needs to be done. Because the Intel 8031 micro-
controller design has a simple bus interface, has brief timing specifications,
uses SRAM, and incorporates relatively simple I/O on chip, it will be used to
illustrate the critical design and analysis processes. Once the complete process
is understood with this simple CPU, more advanced designs can be addressed
with comparative ease.

The 8031 processor is a Harvard architecture with a multiplexed address and
data bus. There are three address spaces: internal RAM, external data RAM,
and external program ROM. The external program ROM and data RAM are

126 EMBEDDED CONTROLLER
Hardware Design

accessed using three memory cycles: program read, data read, and data write.
Three separate, mutually exclusive control signals from the CPU determine
which of the three types of external memory cycle are to occur. Only one
of the signals is active at any one time, making the memory interface very
simple. A program read cycle is indicated when the /PSEN (active low,
program strobe enable becomes active, a RAM data read cycle when /RD
(active low, read) goes active, and a RAM data write cycle is indicated when
/WR (active low, write) becomes active. The /PSEN signal can be directly
connected to enable the program ROM, and the /RD and /WR signals can be
connected to the output enable and write enable pins of the data RAM. Since
the lower eight address bits are multiplexed on the data bus, they are held by
a transparent latch (74x373). The processor outputs an active high enable
signal, ALE (address latch enable), to control the latch. The processor, latch,
program EPROM, and SRAM are shown in Figure 6-1. The timing diagrams
for the three memory
cycles as shown in the
processor specification,
along with the timing
parameters for the CPU,
are shown in Figure
6-2. The CPU timing
requirements must be
reconciled with the
requirements of the
other chips in the sys­
tem, beginning with
the memory chips.

8031

A0..15

8

A0..7

Address
A8..15

ALE

Program
EPROM

RD
WR

PSEN

Address/Data Bus
AD0..7

Enable

Address

D0..7

E

D0..7
Q0..7

8 A8..15 16

Data
OE SRAM
WE

Address

D0..7

Figure 6-1: Preliminary design of the CPU and memory interface.

Memory Selection and Interfacing

Most embedded computer designs make use of EPROM for non-volatile pro­
gram storage and SRAM for volatile data storage. For this example we will
use one of each type: 32Kx8 UV erasable EPROM to store the program, and a
32Kx8 CMOS static RAM. The multiplexed address bits, A0..7, will be latched
from the AD0..7 lines using a 74ALS373 transparent latch. Since there is only
one memory of each type, no address decoding is necessary for the chips to be
enabled directly from the processor memory control lines /PSEN, /RD, and /WR.

127 CHAPTER SIX
A Detailed Design Example

Preliminary Timing Analysis

Critical timing parameters for the EPROM, SRAM, and address latch are shown
in Tables 6-1 and 6-2 and are excerpted from the component specification sheets.
For an experienced designer, the preliminary timing analysis may consist of just
a quick look at the data sheets. A limited analysis of key timing parameters will
be performed first to identify any major changes that may need to be made in
the design. The parameters to be evaluated here will be the CPU memory access
time requirements versus the various memory maximum access time capabilities,
control signal pulse widths, all related to clock speed. First, we will examine the
program memory read access time, and then the data read and write access times.

The instruction fetch (program memory read) cycle of the CPU is shown in
Figure 6-2.

Instruction Cycle

Instruction Fetch Cycle Data Fetch Cycle
Program Memory Data Memory

PSEN

RD

ALE

Latch Output

Address/Data Bus

Instruction Address

Instruction

Data Address

Fetch Cycle

RD Cycle

4 5

1

3

2
Instruc. Addr. Data Addr. WR Data

Figure 6-2: Instruction cycle timing diagram.

The sequence of events is as follows:

1) ALE goes active (high), enabling the external latch to pass A0..7 through
to its outputs. The 16-bit PC (program counter) value, containing the
address of the next instruction byte to be fetched from EPROM, will then
be used to drive the 16 address lines.

2) The lower eight address lines A0..7 are driven on Port 0 (also known as
AD0..7 since it is multiplexed with A0..7 and D0..7), at the same time as
A8..15 are driven on Port 2. At this point, the complete 16-bit address of
the next instruction is available on Port 2 and the address latch. As soon
as the address lines are stable and valid, the address access time for the
memory begins. Since the address will be valid before ALE goes low, a
transparent latch is used to give the memory the address as soon as possible.

128 EMBEDDED CONTROLLER
Hardware Design

If a negative edge triggered register was used instead of a transparent latch
to hold the address bits, then address bits A0..7 would not be available
until a propagation time after the falling edge of ALE.

3)	 Once the address lines are valid, ALE goes low, latching A0..7 bits in the
external address latch. This allows the multiplexed data lines to be used
for data transfer without disturbing the lower eight address lines that are
held in the latch for the remainder of the cycle. Since the upper eight
address lines (A8..15) are not multiplexed, they remain valid for the rest
of the cycle and do not need to be latched.

4)	 /PSEN goes active (low) to indicate that this is a program memory read
cycle, enabling the EPROM to drive the data bus. This enable signal begins
the program memory read access cycle time for the EPROM.

5)	 /PSEN goes inactive (high) signaling the end of the program read cycle and
clocking the EPROM data into the processor. Because this signal is used
to clock data into the CPU from the data bus, there are associated setup
and hold times for the data relative to the rising edge of the /PSEN signal.

Using the preliminary design, the first parameters to be investigated are the access
times. Table 6-1 gives the program memory timing parameters for the 8031. The
memories that have longer access times are less expensive than the fast ones, so
we would like to use the least expensive parts that will meet the specifications.
Both the address and enable access times are of interest, including all possible
propagation paths for these signals. The slowest path will determine the maxi­
mum clock frequency that can be used for reliable operation, up to 12 MHz,
the maximum CPU clock frequency. The ALE path will be ignored for now.
All three paths must be evaluated to determine which one is the speed limiting
condition. The three signal propagation paths for the program read cycle are:

a)	 Valid address A8..15 on Port 2,
EPROM address access time

b)	 Valid address on port 0, D to Q
delay through the latch, and
EPROM address access

c)	 /PSEN active, EPROM enable
access time

These three propagation paths are
shown in Figure 6-3. Figure 6-4
shows the program memory
timing diagram for the 8031. Figure 6-3: Three access propagation paths for program read.

8031

A0..15

8

A0..7

Address
A8..15

ALE

Program
EPROM

PSEN

Address/Data Bus
AD0..7

Enable

Address

D0..7

E

D0..7
Q0..7

8 A8..15 16

Path C

Path A
Path B

129 CHAPTER SIX
A Detailed Design Example

12 MHz Clock
Variable
1/TCLCL =

Clock
1.2 to 12 MHz

Symbol Parameter min max units min max units

TCLCL Oscillator Period 83 nS 83 833 nS

TCY Minimum Instruction Time 1.0 uS 12TCLCL nS

TLHLL ALE Pulse Width 140 nS 2TCLCL-30 nS

TAVLL Address Set Up to ALE 60 nS TCLCL-25 nS

TLLAX Address Hold After ALE 50 nS TCLCL-35 nS

TPLPH /PSEN Width 230 nS 3TCLCL-20 nS

TLHLH /PSEN, ALE Cycle Time 500 nS 6TCLCL nS

TPLIV /PSEN to Valid Data In 150 nS 3TCLCL-100 nS

TPHDX Input Data Hold After /PSEN 0 nS 0 nS

TPHDZ Input Data Float After /PSEN 75 nS TCLCL-10 nS

TAVIV Address to Valid Data In 320 nS 5TCLCL-100 nS

TAZPL Address Float to /PSEN 0 nS 0 nS

NOTE: Test Conditions T=0–70°C, Vcc= 5V±5% Port 0, ALE and /PSEN Outputs: CL = 150 pF
All Other Outputs: CL = 80 pF

Table 6-1: 8031 program memory timing parameters.

T12 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T1 T2

ADDRESS
OR SFR P2

TLHLL

TPLPH

TCY

TLHLH

TPLIV
TPHDX

TPHDZ

TLLAX

OSC

ALE

PSEN

RD, WR

Port 2

Port 0 A7-A0 A7-A0INSTR IN INSTR IN

ADDRESS A15-A8 ADDRESS A15-A8

TAVIV

TAZPL

TAVLL

FLOAT FLOAT FLOAT FLOAT FLOAT

Figure 6-4: 8031 program memory timing.

Assuming a 12MHz clock, the timing analysis for the three paths is:

Path A

The delay from when the CPU provides a valid address A8..15 onPport 2 until
the end of the EPROM address access time, resulting in valid data from the
EPROM on the data bus. Figure 6-5 shows the EPROM timing diagram. The

130 EMBEDDED CONTROLLER
Hardware Design

CPU requires that the data from the EPROM be available 320 nanoseconds
(nS) (TAVIV) after being presented with a valid address. The -30 version of
the EPROM has an address access time of 300 nS max. (EPROM t

AA
), so there

is 20 nS of margin for this EPROM at this clock speed.

TAVIV - EPROM tAA = 320 - 300 = 20 nS margin

Parameter Symbol
Test
Conditions

-15
min max

-20
min max

-25
min max

-30
min max Units

Address access tAA /CE=/OE= VIL 170 200 250 300 nS

/CE access tCE /OE= VIL 170 200 250 300 nS

/OE access tOE /CE= VIL 10 60 10 70 10 100 10 120 nS

Output disable t
DF

/CE= V
IL

0 50 0 50 0 60 0 105 nS

Table 6-2: EPROM
timing parameters. Chip
Note that the -15, Enable

-20, etc. at the top Output

of Table 6-2 are suf- Enable

fixes that refer to the Address
memory access times.

The CPU ALE line is Data

TOE

TCE

TAA

TDF

connected directly to
Figure 6-5: EPROM timing diagram.

the latch enable input
of the 74ALS373 transparent latch. Table 6-3 gives timing specifications for this
device. Remember that this type of latch simply passes the D inputs directly
through to the Q outputs (after a propagation delay), as long as the enable

Parameter From
(input)

To
(output)

min max Unit

tPLH D Q 2 12 nS

t
PHL

D Q 4 16 nS

tPLH E Any Q 6 22 nS

tPHL E Any Q 7 23 nS

t
PZH

/OC Any Q 6 18 nS

tPZL /OC Any Q 5 20 nS

tPHZ /OC Any Q 2 10 nS

t
PLZ

/OC Any Q 2 12 nS

t

input remains high. The ‘373
type latch has an asymmetrical
propagation delay from the D
input to the Q output, since

PLH from D->Q is 12 nS max,
and t is 16 nS max. ThisPHL

corresponds to the first part
of the propagation path B.

As can be seen in Figure 6-2,
ALE goes high before the
address goes valid. The delay
from the enable (E) input to

Table 6-3: Timing specifications for 74ALS373 transparent latch.

131 CHAPTER SIX
A Detailed Design Example

the output (Q) is only 23 nS, much less than the time the CPU takes to put its
address out on the bus. The delay in the ALE path is:

TLHLL-TAVLL = 140 - 60 = 80 nS

Since the latch is enabled in 23 nS, but the address is not available from the
CPU until 57 nS later, this path is not considered. In this, as in most designs,
the ALE delay path is not critical, so it is ignored. This must be considered for
some CPUs, such as the Dallas Semiconductor high-speed 80C320 family of
microcontrollers. Path B, from D to Q, is always worth examining.

Path B

From the time a valid address is available on port 0 (the multiplexed bus),
plus the maximum D to Q delay through the latch, and the EPROM address
access time, until valid data is on the bus.

The CPU allows the same total of 320 nS delay time for this path as above.
In this case however, there is the additional delay of the latch that reduces the
time available to the memory. The latch is specified for a maximum D to Q
delay, t

P D->Q
 of 16nS worst case. So from the 320 nS available, 16 nS is used by

the latch, and 300 nS is used by the EPROM, leaving only four nanoseconds
of margin!

TAVIV - EPROM t - Latch tP D->Q = 320 - 300 - 16 = 4 nS margin ACC

This is a slim, but acceptable margin, as long as the device outputs can drive
the actual loads on their outputs. If the load capacitance exceeded the speci­
fied test load capacitance usually listed in the notes in the timing section, then
the rise/fall time would be extended, possibly throwing this design out of the
specified limits at the full 12 MHz clock speed.

Path C

For Path C, we need to evaluate the delay between the time the CPU enables
the program memory and when the memory instruction output appears on the
bus. The enable access time is from the activation of /PSEN, which enables
the EPROM chip enable (/CE), until the EPROM provides a stable and valid
instruction on the data bus.

132 EMBEDDED CONTROLLER
Hardware Design

Once again, the design margin is the time allowed by the CPU, less the time
taken by the external circuits. The CPU allows TPLIV or 150 nS.

TPLIV - EPROM t
CE

 = 150 - 300 = -150 nS NEGATIVE design margin!

When /PSEN is directly connected to the EPROM /CE line, the CPU provides
150 nS (TPLIV) for the EPROM enable access time, but the -30 EPROM tCE is
300 nS, which is 150 nS TOO SLOW!

At this point, we have several options:

• Decrease the CPU clock speed.

• Buy a faster EPROM.

• Change the wiring: connect /PSEN to /OE instead of /CE.

Let’s examine these three alternatives more closely.

1) Reduce the clock speed of the CPU to conform to the EPROM’s chip
enable access time. This has the obvious disadvantage that the processor
will run more slowly.

2) Buy an EPROM with faster chip enable access time. Faster parts cost
more and, in this case, the fastest device in the table has a chip enable
access time of 170 nS, which is still too slow.

3) Rewire the /PSEN line to EPROM output enable input (/OE) and connect
the chip enable (/CE) to ground. This does not require slowing the chip or
using a faster, more expensive memory.

There is one other solution that is not available on the standard 8051 processor:
the use of “wait states” which stretch the memory cycle timing by one or more
clock cycles. The standard 8051 family parts do not incorporate this feature,
but the high-speed versions do. The 80C320 family of high-speed microcon­
trollers from Dallas Semiconductor does allow wait states. These devices have
internal registers that can be programmed to stretch memory cycles as needed
to accommodate slower memories. Some other types of processors require
external hardware to insert wait states.

Comparing all options, the simplest solution is probably 3). Let’s see what
happens to the Path C timing design margin calculation when we use that
approach. In this version, the CPU’s /PSEN line drives the EPROM’s /OE
input, with the /CE grounded. As before, the CPU allows TPLIV or 150 nS,

133 CHAPTER SIX
A Detailed Design Example

but in this case we use the EPROM’s output enable access time, tOE. Looking
back at the EPROM specifications, we find that for the slowest (-30) part, the
worst-case value for t is 120 nS.

OE

TPLIV - EPROM tOE = 150 - 120 = +30 nS design margin

When /PSEN is directly connected to the EPROM /OE line, the CPU provides
150 nS (TPLIV) for the EPROM enable access time, and the -30 EPROM tOE

is 120 nS, which is more than fast enough. This design change allows the
CPU to run at the full 12MHz rating. The example shows how we may have
to change the design in order to optimize the timing, and the iterative nature
of the design process.

As in everything else, there are some drawbacks and implications for this
approach that need to be considered:

•	 The EPROM is always enabled when the /CE input is grounded, so only
one EPROM can be used this way. This has the disadvantage that the
EPROM draws its maximum operating power constantly.

•	 Use of /CE to enable the device reduces power consumption, which is
important for battery powered applications, especially when there are
multiple devices. Enabling with the /CE input allows for the use of mul­
tiple memory chips in the system by using a memory address decoder to
decode the appropriate address range. The decoder output can drive the
selected memory device /CE input lines one at a time, just as we saw in the
previous module on memory address decoding. That way only one of the
memory devices is powered at a given time. The memories’ /OE lines
would be connected to the processor’s /PSEN signal output, so that slower
memories could still be used. As is the case for other specs, the speed or
power consumption of the system can be optimized.

This concludes our example, but it is evident that there are many other timing
specifications that must be evaluated for a given design. Fortunately, the same
methods we have used here are applicable to the other timing specifications
and devices used in a typical embedded controller system. This completes the
preliminary evaluation of the program fetch cycle memory access times, which
are often among the most difficult to meet. The next step is to analyze the
data memory cycle timing.

134 EMBEDDED CONTROLLER
Hardware Design

External Data Memory Cycles

Data memory read and write cycles are also examined in basically the same
way, using the CPU data read cycle data and the SRAM performance specifica­
tions. The data read cycle has essentially the same three possible paths as the
program read cycle, except that the CPU /RD signal is connected to the SRAM
/OE input, and the SRAM chip enable is grounded.

External Memory Data Memory Read

The data memory cycle corresponds closely to the program memory cycle, as
shown in the accompanying figures and tables. Figure 6-6 illustrates the timing
relationship between the CPU and external SRAM data memory when the CPU

TRLRH

TRHDZ

TRHDX

ALE

PSEN

RD

Port 2

Port 0 A7-A0INSTR IN IN

ADDRESS A15-A8 ADDRESS
OR SFR P2

ADDRESS

TALDV
TAVWL

TAVDV

FLOAT FLOAT FLOAT DATA OR FLOAT

Figure 6-6: 8031 data memory read timing.

12 MHz Clock
Variable Clock
1/TCLCL = 1.2 to 12 MHz

Symbol Parameter min max units min max units
TRLRH /RD Pulse Width 400 nS 6TCLCL-100 nS
TWLWH /WR Pulse Width 400 nS 6TCLCL-100 nS
TRLDV /RD To Valid Data In 250 nS 5TCLCL-170 nS
TRHDX Data Hold After /RD 0 nS 0 nS
TRHDZ Data Float After /RD 100 nS 2TCLCL-70 nS
TAVDV Address to Valid Data In 600 nS 9TCLCL-150 nS
TAVWL Addressto /WR or /RD 200 nS 4TCLCL-130 nS
TQVWH Data Setup Before /WR 400 nS 7TCLCL-180 nS
TWHQX Data Held After /WR 80 nS 2TCLCL-90 nS

NOTE: There are 2 to 8 ALE cycles per instruction. Clocks and state timing are shown on the timing
diagram for reference purposes only. They are not accessible outside the package. TCY is the minimum
instruction cycle time that consists of 12 oscillator clocks or two ALE cycles. Address setup and hold
times are the same for data and program memory.

Table 6-4: 8031 data memory timing parameters.

135 CHAPTER SIX
A Detailed Design Example

reads from the SRAM while Figure 6-7 shows the SRAM read cycle timing
diagram. Table 6-4 gives the data memory timing parameters for the 8031, and
Table 6-5 lists the SRAM’s ready cycle timing parameters. The CPU’s TAVDV
spec places an upper limit on the data memory’s access time, tAA, for path A.

tRC

tAA

tACS

tOE

tOLZ

tCHZ

tOHZ

tOH

High Impedance

Address

CS

Dout

OE

Valid Address

Valid Data

Figure 6-7: SRAM read cycle timing diagram.

Parameter Symbol
-8

min max
-10

min max
-12

min max
-15

min max Units
Read Cycle tRC 85 100 120 150 nS
Address access tAA 85 100 120 150 nS
/CS access tACS 85 100 120 150 nS
/OE to Output Valid t

OE
45 50 60 70 nS

Output hold from addr t
OH

5 10 10 10 nS

/CS to output enable(low Z) tCLZ 10 10 10 10 nS
/OE to output enable(low Z) tOLZ 5 5 5 5 nS
/CS hi to out disable(hi Z) tCHZ 0 30 0 35 0 40 0 50 nS
/OE hi to out disable(hi Z) t

OHZ
0 30 0 35 0 40 0 50 nS

Table 6-5: SRAM read cycle timing parameters.

A) The delay from when the CPU provides a valid address A8..15 on Port 2
until the end of the SRAM address access time, resulting in valid data
from the SRAM on the data bus. The CPU requires that the data from the
SRAM be available 600 nS (TAVDV) after being presented with a valid

136 EMBEDDED CONTROLLER
Hardware Design

address. The -15 version of the SRAM has an address access time of 150
nS max. (SRAM tAA), so there is 450 nS of margin for this memory at this
clock speed!

TAVDV - SRAM tAA = 600 - 150 = 450 nS margin

B) Even allowing for an additional 16 nS through the address latch for
address bits 0..7, there is still a margin of 434 nS, so there is no problem
with address access time.

TAVDV - SRAM t - Latch tPmax = 600 - 150 -16 = 434 nS margin AA

C) This is the time available to the memory after /RD goes low and when
valid data is on the bus. The enable access time provided by the CPU is
250 nS (TRLDV). Since the slowest RAM, the -15 version, has an OE
access time of 70 nS (tOE), there is 180 nS of design margin.

External Data Memory Write

Figure 6-8 and Table 6-6 show the SRAM write cycle diagram and timing
parameters. Figure 6-9 shows a data memory write timing diagram for the 8031.

tWC

tCW

tACS

tAS

tDW

tOHZ

tWP

tWR

tDH

CS

Dout

WE

Din

Address

OE

High Impedance

High Impedance

Valid Address

Valid Data

Figure 6-8: SRAM write cycle timing diagram.

137 CHAPTER SIX
A Detailed Design Example

Parameter Symbol
-8

min max
-10

min max
-12

min max
-15

min max Units
Write Cycle tWC 85 100 120 150 nS

Chip Select to end of write t
CW

75 80 85 100 nS

Addr valid to end of write t
AW

75 80 85 100 nS

Address setup time tAS 0 0 0 0 nS

Write Pulse width tWP 60 60 70 90 nS

Write recovery time tWR 10 0 0 0 nS

Write to output in high Z t
WHZ

0 30 0 35 0 40 0 50 nS

Data to Write time overlap t
DW

40 40 50 60 nS

Data hold from write time tDH 0 0 0 0 nS

Output disable to out in highZ tOHZ 0 30 0 35 0 40 0 50 nS

Output active from end of WR tOW 5 5 5 5 nS

Table 6-6: SRAM write cycle.

TWHQZTQVWH

ALE

PSEN

WR

Port 2

Port 0 A7-A0INSTR IN

ADDRESS A15-A8 ADDRESS
OR SFR P2

ADDRESS

TWLWH

TAVWL

FLOAT DATA OUT OR FLOAT

Figure 6-9: 8031 data memory write timing.

From the CPU specifications, the address is valid 200 nS (TAVWL) before the
/WR line goes low, and the data is valid 400 nS (TQVWH) before the /WR
line goes high. The RAM requires an address setup before write time of 0 nS,
which is compatible with the 200 nS provided by the CPU. The RAM data
setup time before the end of the /WE pulse (SRAM spec tDW) is 60 nS, which
is well within the 400 nS available. The latch delay has been ignored here
because it is 16 nS, which is insignificant compared to the design margin
available. Also, the chip select input of the RAM is grounded, so the chip
select access time does not need to be considered. The minimum write pulse
width from the CPU is 400 nS (TWLWH), and the RAM requires only a mini­
mum of 90 nS (t

WP
), so the pulse width is well within the spec. The RAM

has a 0 nS hold time requirement (tDH), and the processor provides 80 nS
(TWHQX), so the RAM hold time requirement is also met with margin.

138 EMBEDDED CONTROLLER
Hardware Design

We’ll now look at three typical design problems and show how to use the
techniques described in this chapter to solve them.

Design Problem 1

For the same three paths in Figure 6-3, find the maximum allowable clock
rate, given the slowest EPROM from Table 6-2. Use the specs for the -30 part
which has a 300 nS access time and the same address latch specs in Table 6-3.
Consider the 8031, EPROM, and 74ALS373 latch specs as discussed in the
sections describing Paths A, B and C.

Solution: In this case, we are given the component timing, and we need to
solve for the minimum clock period (T = 1/maximum clock frequency).

Path A:

The CPU allows TAVIV = 5*T-100 nS

The EPROM uses Taa = 300 nS

The limiting condition is TAVIV = Taa, so:

5T-100 = 300

5T = 400

T = 80 nS

Path B:

The CPU allows TAVIV = 5*T-100 nS

The EPROM uses Taa = 300 nS

The latch uses TPHL D->Q = 16 nS

The limiting condition is Taa + Tlatch = TAVIV, so:

TAVIV = Taa + Tplatch and TAVIV = 5T-100, so:

5T-100 = 300 + 16

5T = 416

T = 83 nS

Path C:

The limiting condition is TPLIV = Toe of the EPROM, so:

The EPROM Toe from the table is 120 nS

The equation is TPLIV = Toe

139 CHAPTER SIX
A Detailed Design Example

Solving for T, we have:

3T - 100 = 120
3T = 220
T = 220/3 = 73 nS

Of all three paths, the longest period is due to Path B at 83nS, so it is the limit
to the clock rate for the specs considered here.

Paths A and C are not constraints for this case.

So Path B is the limiting case when /OE is connected to /PSEN, and the maxi­
mum clock frequency is 1/83nS = 12 MHz.

Note that Path B is just at the spec limit for 12 MHz operation (1/83 nS = 12 MHz),
so the maximum clock is 12 MHz, even for a faster EPROM.

Also notice that if /PSEN was instead connected to /CE, (Path C), the TPLIV
spec would be the limiting factor: TPLIV = 3T-100 = Tce of the EPROM. The
EPROM Tce from the table is 300 nS. Solving for T, we have:

3T-100 = 300
3T = 400
T = 400/3 = 133 nS.

For this case, 1/133 nS = 7.5 MHz would be the maximum allowable clock rate.

Design Problem 2

You have an existing processor design, and you need to define what the mini­
mum acceptable specs are for the program EPROM to determine which vendors
and part numbers will work in the system. Assuming a clock rate of 12 MHz
for the 8051, determine the following specs for the memory chip to be used
with it, assuming the same address latch used in the previous examples, and
find the maximum acceptable values for:

• Tce max (chip enable acess time)

• Taa max (address access time)

• Tod max (output disable time, referred to as Tdf in the EPROM spec)

Assume /PSEN is connected to the EPROM /CE and EPROM /OE is grounded.

140 EMBEDDED CONTROLLER
Hardware Design

Solution: In order to determine the required Tce, we need to calculate the
memory spec based on the CPU speed. Since /PSEN is connected to the
EPROM /CE, the relevant CPU spec is TPLIV. From the 8031 program memory
timing table, TPLIV = 3T-100 nS, where T is TCLCL, the clock period. The
answer for Tce is in the table for 12 MHz as 150 nS, but it could be computed
for an arbitrary clock as:

Tce max = 3*83.3-100 = 150 nS

Taa is different, because the latch delay must be included. In this case the
relevant CPU spec is TAVIV, which is 320 nS at 12 MHz. Subtracting the worst
case latch delay, Tphl D->Q is 16 nS. Therefore only 320-16 = 304 nS is available
to the memory as Taa. The general solution is TAVIV = 5T - 100, so:

Taa = TAVIV-Tplatch = 5*83.3-100-16 = 301 nS

Note that the Taa result is slightly (3nS) different from the value computed
using the table. This is not unusual because the specs are not necessarily
consistent, nor are they precise to a few nS. Many of the specs are based on
statistical estimates of the production population, and are themselves only
approximations. Often these specifications are guaranteed but not tested on
every device.

Tdf is the time the EPROM takes to turn off its output drivers. This relates to
the time the CPU allows for the EPROM to turn off its tri-state driver outputs
after /PSEN goes inactive. If this spec is violated there will be bus contention
between the CPU and the EPROM for the time of the overlap. The relevant
CPU spec is TPHDZ. At 12 MHz, 75 nS are available to the EPROM to disable
its outputs. The general form is TPHDZ = T-10 or 73 nS, again slightly different
from the table value.

Design Problem 3
For a specific EPROM spec, find the maximum allowable clock rate, given the
slowest EPROM from Table 6-2. Use the specs for the -30 part which has a
300 nS access time and the same address latch. Consider the 8051 specs for
TPLIV, TAVIV, and TPHDZ.

Solution: In this case, we are given the component timing, and we need to
solve for the minimum clock period (= 1/maximum clock frequency).

141 CHAPTER SIX
A Detailed Design Example

The equation for TPLIV = 3T-100 = Tce of the EPROM. The EPROM Tce from
the table is 300 nS. Solving for T, we have:

3T - 100 = 300

3T = 400

T = 400/3 = 133 nS.

The EPROM Taa = 300 nS, Taa = TAVIV-Tplatch and TAVIV=5T-100, so:

300 = 5T - 100 - 16

5T = 416

T = 83 nS

The EPROM Tdf = 105 nS, and Tdf = TPHDZ = T-10, so:

105 = T - 10

T = 115 nS

Of all three specs, the longest period is due to the EPROM Tce and TPLIV spec,
1/133 nS = 7.5 MHz. If the /PSEN signal is connected to the -30 EPROM’s /OE
pin however, then:

EPROM Toe = 120 nS

TPLIV = 3T - 100 = 120

3T = 220

T = 73 nS

With /PSEN connected to /OE the TPLIV spec is not the limit.

The next slowest is due to TPHDZ, resulting in a minimum clock period of
115 nS, corresponding to a maximum clock frequency of 1/115nS = 8.696 MHz.

For the -30 EPROM in Table 6-2, Tdf will be the limiting specification when
the access time is fast enough. Tdf is 105 nS, which is greater than the 75 nS
available at 12 MHz, resulting in as much as 105 - 75 = 30 nS of bus contention!
That is a serious conflict, and should not be allowed to occur.

Note that the access times were well within specifications for 12 MHz operation.
If we looked only at the access time specs there is no problem, so the system
might appear to work. However, bus contention may occur at the 12 MHz
frequency, so the correct answer is 8.7 MHz.

142 EMBEDDED CONTROLLER
Hardware Design

If we change the EPROM to the -25 version, it is possible to clock the CPU at
its limit of 12 MHz without exceeding any of the other specs. This example
shows why it is important to consider ALL the specs, since it is not always the
obvious specs that are the limits.

Completing the Analysis

Once the preliminary timing analysis is complete, the next step is to evaluate the
noise margin as well as the DC and AC loading for the design. The results of this
will determine if any of the signals are incompatible or overloaded, requiring
changes to the circuit design or component selection. Of course, any changes
made to the design (changing components, adding pull-up resistors, etc.), will
require the timing to be re-evaluated. Once again we find that the interactions
may cause us to do our design in an iterative fashion. This is part of the reason
we don’t want to perform a complete timing analysis from the beginning.

Once the preliminary timing, noise margin, and loading analyses indicate that
the design is correct, it is necessary to review all the remaining specifications
for all the ICs used in the design. This is not as difficult as it might seem.
Most of the hard work is done as part of the preliminary analysis. Also, many
of the device specs are simply not applicable to a given design. Examples of
these specs include alternative SRAM memory write cycles. A given processor
will always use one particular memory write sequence (i.e.: address stable
first, then /CS active, then /WE goes low). As a result, the other write cycles
and specs can be ignored. Still other specifications are just for information,
such as the 8051 TCY spec, which simply informs us that an instruction cycle
takes 12 clock cycles on the standard 8051. There will be some other specs
that will apply to our design, such as the setup and hold times for some devices.
In some cases the specification is a non-constraint, such as the 8051’s TPHDX,
input instruction data hold time after /PSEN goes high, specified as 0 nS. A
zero hold time indicates that the driving device may remove the instruction
at the instant when /PSEN goes inactive. Any device will meet that constraint,
since it cannot predict in advance when the /PSEN line will change. Other specs
will often have a huge margin as can be seen by inspection. The ’74ALS373
address latch, for instance, requires a minimum enable pulse width that is on
the order of 10 nS. The CPU puts out an ALE pulse that is TLHLL = 140 nS
wide, so there is obviously lots of margin in that case.

143 CHAPTER SIX
A Detailed Design Example

With experience, this iterative design and analysis process becomes much
easier, and potential problems are easier to anticipate. However, even with
experience it is easy to become lax and leave out the review of the seemingly
less important specs. This will often result in a direct application of Ken’s first
law of worst-case analysis: “Any specification which is not considered will certainly
be violated, causing catastrophic failure at the worst possible time.” That’s usually
right before a salary review or in front of an important customer! It is important
to review all the specs for the parts to be used in a design. When alternate
sources for the devices are to be used, the specifications of these alternates
should also be reviewed. Parts from two vendors with the exact same part
number may have subtly different specs.

Chapter Six Problems
1)	 For this problem, use the fastest EPROM program memory from Table 6-2

(the –15 version), the 8031 CPU specs in Table 6-1, and the latch specs
from Table 6-3. Ignoring the TCLCL limit on clock speed, how fast can
the processor be clocked? Use the connections shown in Figure 6-3, with
/PSEN connected to the EPROM /CE pin.

2)	 Use the same conditions as the problem above, except connect /PSEN to
the EPROM /OE control.

3)	 For a system that has multiple program memories, an address decoder
is required in order to generate separate select signals to enable the pro­
gram memories. What paths and specs will be affected and how will the
timing change?

4)	 For each of the CPU data memory write timing parameters listed in
Table 6-5, list the corresponding SRAM timing parameters from Table 6-6.

145 CHAPTER SEVEN7

Programmable

Logic Devices

Application specific integrated circuits (ASIC are ICs that have been designed or
programmed to meet the needs of a specific design in which the chips will be
used. These are differentiated from standard, or general purpose ICs that may
be used in many different applications. General-purpose logic ICs are usually
designed “from scratch” using only the most basic circuit elements such as
transistors and gates. The cost of building a chip this way can be amortized
over a large number of devices if it is used in many different applications.

When an application specific chip is designed from scratch, it is referred to as
a full custom logic design. It is the lowest cost to manufacture because it takes
the least amount of silicon to implement a given function. Unfortunately the
design of a large full custom chip is very expensive (hundreds of thousands to
millions of dollars) due to the labor-intensive design and prototyping process,
and cannot be justified unless a very large quantity will be manufactured.
Originally this was the only way to design chips, but now there are several
alternatives for designing ASICs.

Standard cell IC design uses a library of common logic functions that have
already been designed and tested. This reduces the amount of design effort in
that logic IC blocks such as multiplexers are used in place of the equivalent
random logic design implemented with gates. The cells can range in complexity
from simple gates to complete CPUs. Standard cell based IC design has become
the standard and can now be done even on a PC at a much lower cost than
other methods. The cost of manufacturing a minimum production quantity of
parts is less (thousands of dollars) than it would be for a full custom design
process, but still high enough to be inappropriate for prototyping and low
volume production (e.g., less than 5000 units).

146 EMBEDDED CONTROLLER
Hardware Design

Gate arrays are fabricated with a fixed array of gates and the wiring is defined
by the user when the chip is manufactured. The advantage of this approach
is that the chips can be fabricated up to the point where the interconnecting
wires are placed on the chip, ready for a custom interconnect. Since most of
the processing is completed before the connections for any particular design
are placed on the chip, these “almost finished” devices can be produced and
stockpiled without any interconnects. The final interconnect can be added to
define a given design, resulting in a customized version of a nearly standard
part. Gate arrays are often used when the production volume is too low to
justify a full custom design, but high enough so that a user programmable
device is not cost effective.

User programmable logic devices (PLDs) are a family of devices that are all
manufactured in the same way, and can be customized using a special pro­
gramming process much like an EPROM. An EPROM can be used to implement
arbitrary logic functions by using the address lines as inputs and data lines as
outputs. Thus, a 1Mx8 EPROM could have eight independent logic outputs
that can be any boolean function of any of the 20 input address bits. The fully
completed truth table is programmed into the EPROM so that each unique
input pattern will result in the appropriate data at the outputs. EPROMs are not
often the best choice for the kind of logic required in most designs because of
their speed and relative complexity, which translates to performance and price.
Other types of devices have been designed specifically for use in those appli­
cations. There is a wide range of devices available, from fuse-linked two-level
combinatorial logic and EPROM registered logic arrays, to arrays of logic blocks
programmed with SRAM memory in each block. These devices span a range
of complexity from one hundred to more than ten thousand usable gates.
These families of devices are referred to as programmable logic arrays (PLA),
programmable array logic (PAL, a registered trademark of AMD Inc.), and
other trademarked names.

Field programmable gate arrays (FPGAs) are a cross between gate arrays and
PLDs. They have an array of logic with user programmable interconnections.
FPGAs are generally used where the desired logic function is too large to fit
in a sum-of-products device, and the volume is too low to justify the use of
a gate array or custom logic. FPGAs are available in sizes large enough to
implement an entire CPU.

147 CHAPTER SEVEN
Programmable Logic Devices

Introduction to Programmable Logic

The most common types of programmable logic are two level (AND-OR)

logic chips implementing a sum-of-products logic function on each output.

An example sum of products form in standard notation is: F = AB + CDE

The notation used in this book for the example above is: F = A*B + C*D*E.

The conventions we will follow include:

• Logic AND is denoted by an asterisk: *

• Logic OR is denoted by a plus sign: +

• Logic inversion (NOT) by a slash: /

The examples above would require three gates: one two-input AND gate, one
three-input AND gate and a two- input OR gate to combine the AND gates’
outputs. (Other references may use different notation, such as & for logic
AND, or a minus sign - for inversion, e.g.: F = A & B + -C.)

There are several varieties of two level programmable logic devices, with most
of the variations relating to the type of output. Some devices have output flip-
flops to allow storage and sequential logic, and some have tri-state drivers.
The outputs of some of these devices can be defined at the time they are pro­
grammed as inverting, non-inverting, latched, bi-directional, asynchronous
and other configurations. The pattern used to program the device is referred
to as a fuse map because the original chips used fuse linked memory and the
map represents the pattern of blown fuses.

Technologies: Fuse-Link, EPROM, EEPROM, and RAM Storage
Fuse-link PLDs consist of an array of fuses that make connections between
the inputs and the logic gates inside the chip. When the chip is programmed,
the unwanted fuses are “blown open” to leave only the desired connections.
Fuse-link devices are implemented using bipolar logic so they are very fast,
and consume a lot of power. Obviously they can only be used once, so they
are not as desirable for prototyping purposes as an erasable device. Erasable
parts, built using the same technology as EPROM, EEPROM, and RAM data
storage for the arrays are available and carry with them the same characteristic
advantages and disadvantages as their respective memory types.

148 EMBEDDED CONTROLLER
Hardware Design

Architectures

The first user programmable logic array chips had two levels of asynchronous
logic. They were organized with two arrays of programmable fuse links, one
connecting the inputs to an array of AND gates and the other connecting the
AND gate outputs to an array of OR gates driving the output pins. This type
of device allows arbitrary sum-of-products logic functions to be implemented
limited only by the number of AND and OR gate inputs, and the I/O pins.

Programmable array logic devices are similar to PLA devices except that there
is only one fuse array connecting the inputs to the AND gate array. The con­
nections between the AND and OR gates in the PAL are fixed by the design of
the PAL. Both PLAs and PALs are made with either active high or active low
outputs. It is important to note that the arrays and inputs are not necessarily
identical; some OR gates in a PAL may have more inputs than others on the
PAL, for example.

Field programmable gate arrays have a more general architecture, and are not
limited to the sum-of-products form. FPGAs have programmable intercon­
necting wires, logic blocks, and I/O pins. The connections and logic in FPGAs
are defined by use of either static RAM, E/EEPROM or anti-fuses. Anti-fuses
are like fuses, except that they have a high resistance in the unprogrammed
state and when programmed their resistance becomes much lower. The anti-
fuse is programmed to make a connection by forcing a current through the
anti-fuse. Anti-fuse FPGAs are based on an array of gates and wires that can
be selectively shorted with the anti-fuse acting as a one time programmable
short circuit. FPGAs are almost exclusively implemented in CMOS technol­
ogy because of the high logic density to keep the chip power and temperature
to reasonable levels. Static RAM based FPGAs are composed of logic blocks
with embedded volatile static RAMs that must be loaded with configuration
data every time they are powered on. The logic functions and interconnection
information is stored in volatile static RAM. The configuration can be loaded
from an EPROM or EEPROM directly or via a CPU before they are used.

Relatively large supply currents are drawn by bipolar PLDs, so CMOS versions
have been made available to reduce the power consumption requirements. Most
of the CMOS PLDs are actually mixed NMOS and CMOS logic, so their power
dissipation is not as low as pure CMOS. Use of a PLD in a battery-powered
application will generally require a pure CMOS PLD to maximize battery life.

149 CHAPTER SEVEN
Programmable Logic Devices

Erasable (E/EE) versions are available from several vendors, which are par­
ticularly useful in the development and debug of a new design when things
change frequently. The fuses are replaced with floating gate switches with
essentially the same construction as the EPROM and EEPROM memory cells
described earlier. The EPROM versions of these parts are sold in windowed
packages so they can be erased just like a UV EPROM, as well as non-windowed
packages that can only be programmed once (one-time programmable, or OTP).
The EE versions of these parts are erased electrically before they are programmed.

Small programmable logic devices consist of an array of programmable connec­
tions, or fuses, interconnecting the input signals with a number of AND gates,
followed by an array of connections between the AND gates and some OR gates,
resulting in one or more “sum-of-products” logic outputs. The notation used
to illustrate the fusible interconnections between the inputs, gates, and outputs
is shown in Figure A Programmed

B A • B • C (Open) Fuse Link7-1. Its purpose is C
A B Cto allow a compact TTL AND Gate Symbol

pictorial represen- X X A • B

tation of the circuits, A B C
PLD Representation

by avoiding the X X X A • B • C
Unprogrammed
(Intact) Fuse Linkexplicit represen- PLD Representation

tation of each
Figure 7-1: PAL logic diagram shorthand notation.

independent input
signal to gates that have a large number of inputs. Instead of showing every
gate input, a single line represents multiple inputs, and an “x” is placed at
points where the gate inputs are connected to one of the PLD input signals.
Figure 7-2 Input Lines
shows an Input Buffer

Noninverted All Fuse Links Intact

Product
Lines

Inverted
(Complement) Path

X X X X X X

X X

2-Wide
OR Gateexample of this. A

A • BIn understand­
ing how various

B
PLDs operate,
it is useful to (True) Path

look at several C

ways in which a
programmable
logic device can Figure 7-2: Simplified PAL logic diagram.

• •
• • • •
• •
• •

• •
• •
• •

• •
• •
• •

• •

150 EMBEDDED CONTROLLER
Hardware Design

be organized. The simplest approach is to use a PROM memory as a program­
mable logic device, using the address lines as input and the data lines as output.
Figure 7-3 shows a n Inputs
PROM memory, with

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

• • • •
• •
• •
• •

• •

• •
• •

• • • •
• •
• •
• •
• • • •
• •
• • • •
• • • •

(Programmable)

AND Array (Fixed)

13 12 11 10
OR Array

an array of AND gates
connected to decode
each memory address,
and multiple bits per
location that can be
programmed by the
user to output an
arbitrary binary

2n
value (memory Duct
contents) for each Lines

combination of the
inputs (addresses).

PROM as PLD

Figure 7-3 shows the
fixed AND array which Q3 Q2 Q1 Q0X = Fuse-Link Crosspoint Connection
decodes each location in • = Fixed Connection n Outputs
the PROM. Note the Figure 7-3: Typical PROM as PLD architecture.
binary pattern of con­
nections in the AND array. The top AND gate decodes address zero, enabling
the pattern programmed in the top row of fuses to be presented at the output.
This pattern is the 4-bit word of data stored in location zero as a pattern of
programmed fuses.

The advantage of using a PROM as a PLD is it can implement any logical
function of the inputs, regardless of complexity of the logic function to be
represented. This is because each possible permutation of the inputs corre­
sponds to one memory location, and the PROM is essentially a physical
implementation of the complete logic truth table. Unfortunately, the number
of bits in the memory grows exponentially with the number of inputs. Since
most practical logic functions do not have very many product terms on
average, the memory is very sparsely filled with data. This means most of
the circuitry is effectively wasted.

151 CHAPTER SEVEN
Programmable Logic Devices

Programmable Logic Arrays

The PLA is a very flexible logic device, as it allows both the AND as well as
the OR arrays to be programmed by the user. Figure 7-4 illustrates the archi­
tecture of a typical PLA.

PLA — 4 IN - 4 OUT - 16 Products
The PLA allows the imple-

AND Array (Programmable)

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

(Programmable)
13 12 11 10

OR Array
mentation of almost any
sum-of-products logic
function to be implemented,
within the constraints of
the available number of
input pins, AND gates,
OR gates, and output pins.
While the PLA architecture
allows more efficient utili­
zation of the resources on
the chip, it is also more
difficult to program, as
fuses must be programmed
in two separate arrays.
Standard memory program­
ming devices cannot be
easily modified to program
a PLA with two arrays.

X = Fuse-Link Crosspoint Connection Q3 Q2 Q1 Q0

Figure 7-4: Typical PLA architecture.

PAL-Style PLDs

While there is a wide variety of programmable logic available, the most preva­
lent low cost version used in embedded designs is the PAL, a variation of the
PLA sum-of-products chip. Consisting of a programmable AND (product)
array and a factory-defined OR (sum) array, it is very similar to a standard
memory device. As a result, many memory programmers can also be used to
program PALs. This is a key reason for the success of these devices, along
with the availability of software to ease in designing the fuse patterns for
implementing specific users designs.

In a typical PAL, the inputs and their logical complements are provided to
each of the AND gates through a programmable array of fuse connections.

152 EMBEDDED CONTROLLER
Hardware Design

The connections between the AND and OR gates are fixed by the manufacturer,
and in most cases, some of the outputs are also fed back to the input array.
Figure 7-5 shows the
PAL implementation
of the logic function
/(A * /B + /A * B).

Figure 7-6 shows a
simplified example of
the logic and fuse con­
figuration used in most
PAL devices. It has four
inputs and four outputs
which are non-inverting

A

Fuse-Link
Not Blown

A + B

A + B

B

A

B

A + B

A + B

A A B B

Fuse-Link
Blown

X X

X X

sums of four products. Figure 7-5: Example of PAL fuse programming.

Most small PLD parts use
PLA — 4 IN - 4 OUT - 16 Products a numbering convention

that makes it easier to

AND Array (Programmable)

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

13 12 11 10 OR Array (Fixed)
determine the configuration
of the logic. The number
is usually composed of
three parts: the number of
inputs to the array, output
circuit type, and number of
outputs. Thus a PAL with
the part number 16L8 has
16 inputs to the AND array
(not necessarily that many
input pins), and eight
active low outputs (L),
while a 12H6 has 12
inputs, and six active high
(H) outputs. A device
number with an “R” in it
has an output register, and

Q3 Q2 Q1 Q0X = Fuse-Link Crosspoint Connection a “V” indicates variable or
• = Fixed Connection user programmable out-
Figure 7-6: Typical PAL organization. puts. Some of the pins may

153 CHAPTER SEVEN
Programmable Logic Devices

be shared inputs and outputs. Not all of the outputs are necessarily of the same
type, however. The 16R4, for example, has four registered outputs and four asyn­
chronous (un-registered) outputs. The V parts have a special output “macro-cell”
that can be programmed to be asynchronous (un-clocked), synchronous (clocked),
inverted, non-inverted, feedback internally to the AND array, and so on.

Design Examples

Probably the most common applications of simple PLDs are as address decoders
in microcomputer and microprocessor systems. A device such as the 16L8 PAL,
with active low outputs is well suited to drive the active low enable inputs of
most memory and I/O
devices. Because a PAL
can have different logic
functions on the same
chip, one PAL can
decode both memory
and I/O addresses.
Figure 7-7 shows an
example of this. The
program memory
map for Figure 7-7 is
shown in Table 7-1; the

8031

LED

EPROM1CEPLD

A15..A8

16

A0 ..15
Address
A0 ..15

RD

WR

Output Port

Input Port
SW1

+V

+V

D0

D0 D Q

C

EPROM2CE

IN_EN

RAM1CE

RAM2CE

OUT_CK

PSEN

RD

WR

To RAM OE

To RAM WE

external data memory
Figure 7-7: PLD decoding of memory and I/O enables.

map is given in Table
7-2. Address and control lines Program Memory Address Space
can be wired to the input pins,
and the output pins can drive
the select and enable lines of
the memory and I/O chips.

Table 7-1: Program memory map for Figure 7-7.

External Data Memory Address Space

Address Range (hex) Device Selected

Program 0000 - 7FFF 2Kx8 EPROM 1

Program 8000 – FFFF 32Kx8 EPROM 2

Address Range (hex) Device Selected

Data 0000 - 7FFF 32Kx8 SRAM 1

Data 8000 - FEFF 32Kx8 SRAM 2

Data FF00 - FFFF Read Input port enable

Data FF00 - FFFF Write Output port latch clock

Table 7-2: External data
memory map for Figure 7-7.

154 EMBEDDED CONTROLLER
Hardware Design

An 8031 system with two program EPROMs, two data SRAMs, and memory
mapped I/O ports could be connected using gates or decoders, but it would
be more efficient to use a 16L8 PAL. The inputs to the PAL are the control and
address lines. The outputs are the memory chip enables, the input port drive
enable, and the output latch clock.

Note that the program memory is full, using two 32-kilobyte devices. Also, the
input and output ports appear in the external memory address space. This is an
example partially decoded, memory mapped I/O, since the input and output
devices appear repeatedly in a memory address range of FF00 to FFFF hex.

For the program memory, the equations that must be used to program the
PLD would be as follows:

/EPROM1CE = /PSEN * /A15 Enabled when PSEN active and A15 = 0
/EPROM2CE = /PSEN * A15 Enabled when PSEN active and A15 = 1

The equations above will enable the EPROMs when the processor is fetching
instructions (/PSEN = 0) so that EPROM1 will be enabled for program memory
addresses 0-7FFF and EPROM2 will be enabled for addresses 8000-FFFF.

The gates in Figure 7-8 are the equivalent to the equations for the EPROM chip
enable equations shown above. Note that the gate used for the EPROM1CE
function is equivalent to a simple OR

PSENgate. This is because inverting all the EPROM1CE
A15

inputs and outputs of a logic function

changes it from an AND to an OR
 PSEN

EPROM2CEand vice versa. A15
Figure 7-8: EPROM chip enable gate equivalents.The RAM addresses are similarly

enabled when the processor is accessing external data memory, except that the
input and output ports are memory mapped into addresses FF00 to FFFF. In
order to avoid bus contention, SRAM 2 is disabled between FF00 and FFFF.

/RAM1CE = /A15 Enabled when A15 = 0
/RAM2CE = A15 * /A14 * /A13 * /A12 * /A11 * /A10 * /A9 * /A8

Enabled when address > 8000 and < FFxx
/IN_EN = /RD * A15 * A14 * A13 * A12 * A11 * A10 * A9 * A8

Input Enabled when RD low and address = FFxx
/OUT_CK = /WR * A15 * A14 * A13 * A12 * A11 * A10 * A9 * A8

Output latch clock when WR address FFxx

155 CHAPTER SEVEN
Programmable Logic Devices

This PLD implements a system with 64 kilobytes of program EPROM, and
64 kilobytes-256 bytes of data RAM. Note that 256 bytes of the external data
memory address space are dedicated, or mapped, to the input/output port. The
input port can be read as if it were data memory at locations FF00 to FFFF hex.
This incomplete, or partial address decoding, decodes 256 different addresses
to access the same input/output port (partial I/O address decoding). Similarly,
the output port can be written to by writing data to data RAM addresses FF00
to FFFF hex. Note that changing the I/O addresses to different values requires
only changing the equations and burning the corresponding fuse map patterns
into another PLD. If the address map should need to be changed, it is possible
to do so by using a different PAL External

Program Datadevice programmed with a
Memory Memory

different fuse map representing
FFFF FFFF

different equations. FF00 I/O
EPROM2 FEFF

SRAM2Tables 7-1 and 7-2 above can also 8000 8000
7FFFbe represented graphically with an 7FFF

address map, as shown in Figure 7-9. EPROM1 SRAM1

0000 0000

PLD Development Tools
Figure 7-9: Memory address map.

Because of the complexity that results from flexibility in defining PLD func­
tions, it is not practical to manually define the fuse map that is used to pro­
gram a PLD. Automated translation programs are used to convert a higher-
level description of the logic to the low-level fuse map that is required. The
software that performs that task is referred to as a PLD assembler or compiler
because it is equivalent to a programming language translator used on a
general-purpose desktop personal computer. PLD development software is
available from both PLD vendors and other software houses, in versions that
run on PCs and workstations. PLD assemblers input Boolean equations and
generate the corresponding fuse map for programming. PLD compilers, on
the other hand, take higher-level circuit descriptions such as logic schematics,
state diagrams, and truth tables as input in addition to Boolean equations.
The equation notation and syntax are unique to each particular translator.
Some of the translators will perform additional functions such as selecting
the appropriate type of PLD for the design, and logic minimization that is
intended to reduce the complexity and cost of the device that will ultimately
implement the design.

156 EMBEDDED CONTROLLER
Hardware Design

The two most common high-level logic compiler languages are VHDL and
Verilog. Both of these hardware description languages are in common use for
the design and definition of large, complex logic designs, as are commonly
implemented in large custom logic ICs, and FPGAs. Because the larger FPGAs
are difficult to program and modify using standard gate and module level
design, the high-level hardware description languages are gaining popularity.
The advantages and disadvantages of using a high-level hardware description
language are very similar to those of a high-level computer language. By
implementing a design using these high level descriptions, it is possible to
take a chip design from one type of device to another with less effort than if
it was done at the gate level. Of course, similar trade-offs exist as they do for
high-level language programs. They are less compact and efficient in the way
they utilize the hardware, and tend to result in somewhat slower performance
than hand optimized gate level designs.

Other design tools, such as logic simulators, allow the logic functions to be
tested against known input and output logic patterns. The test patterns,
referred to as test vectors, are presented to the software simulation of the PLD
logic design in sequence and the simulated outputs are compared with the
desired outputs for discrepancies. The test vectors for design verification are
generated by the design engineer to verify that the design will perform as
intended. Unfortunately some of the most common problems and errors are
those that were not planned for and only show up upon plugging the PLD
into the circuit. Unforeseen conditions often cause erroneous outputs, requiring
correction of the PLD design.

Test vectors are also important in verifying that the PLD is fully functional.
Even though the fuse map is read back during the programming process,
other faults may be impossible to detect by verifying the fuse map. This is
particularly true for fuse link devices, since there is no way for them to be
fully tested at the factory due to the fact that they cannot be erased. The test
vectors that are used for design verification can be applied to the device for
testing immediately after being programmed and verified on many PLD pro­
grammers. Generating a set of test vectors that will detect all possible faults
(100% fault coverage is virtually impossible, and even approaching that goal
can require a lot of effort and many test vectors, particularly for sequential
circuits. To address that need, some PLD software vendors have test vector
generator programs, which will create a set of test vectors for a given PLD
design automatically. Most of the newer, more complex devices also have

157 CHAPTER SEVEN
Programmable Logic Devices

special test pins (JTAG, boundary scan) that improve the ability of a test system
to modify and observe the state of the internal logic, which makes the tests
easier and faster.

Simple I/O Decoding and Interfacing Using PLDs
Programmable logic is particularly useful for decoding the addresses and
control lines from a processor, because it can be used to activate the chip
enable signals for the various memories and I/O chips in a system. PLDs are
more flexible than standard logic for several reasons. Each of the PLD outputs
can be programmed to go active when the inputs are in a particular state, such
as a particular address or range of addresses. The same functions that can be
decoded in a PLD would generally take several standard logic chips. This is
because many of the inputs, such as address lines, are common to several of
the output logic functions. Also, because the devices are programmable, the
decoding logic can be changed without changing the wiring on the printed
circuit board. These characteristics have made PLDs very popular, which has
in turn brought their prices down to levels that are comparable to standard
logic solutions. The only disadvantage to using PLDs is that they require
software to “compile” the logic into binary patterns and an instrument,
equivalent to a PROM programmer, which can program the device with those
patterns. Each type of device requires a special programming procedure,
which may be unique to the manufacturer of the PLD. Generic compilers and
programmers are available, but there are devices that can only be programmed
using the manufacturers proprietary software or programmer.

IC Design Using PCs
For designs that must be very inexpensive in high volume, and for designs
that must fit in a tight space, a custom logic IC may be the best solution.
Custom ICs (ASICs) are also becoming easier to develop with the availability
of PC-based IC design tools. Because PCs have become available to almost all
design engineers, computer-aided design (CAD) software has been written to
run on the PC for custom and standard cell IC design as well as PLD design.
Some versions of this IC CAD software can be obtained for a few thousand
dollars, making it practical even for smaller firms. Some versions of this low
cost software will even convert from a schematic level circuit description to a

158 EMBEDDED CONTROLLER
Hardware Design

detailed IC layout that can be transmitted via modem to an IC fabrication
facility. In addition, MOSIS, a joint project of government and university
organizations, has been operating for many years to provide low cost IC pro­
totypes for the government, universities, and small companies who could not
afford the high costs (many thousands of dollars) for a dedicated IC prototype
run. By combining multiple designs on each silicon wafer, the minimum
fabrication costs are reduced to as low as approximately $500 for a design
with less than 1,000 gates, with delivery of six to eight weeks. This makes it
practical for every engineer to design custom and standard cell ICs. Design
oriented software is also available for simulation of the chip before prototyp­
ing begins. The logic functionality can be verified by implementing early
prototype chips using PLDs. Production parts can then be made in low vol­
ume using MOSIS or by other vendors in high volume at lower cost. Advan­
tages of this approach include fewer ICs, smaller size, lower power, control of
proprietary designs, and lower cost in volume. An application requiring high
levels of integration, low cost in high volume, or very small size would be
most appropriate for this design approach.

FPGA devices allow the designer to prototype and change custom designs
and test them quickly. Some of these devices store their logic configuration in
SRAM memory, allowing the hardware to be re-programmed quickly, even in
the final application. The largest devices contain the equivalent of about one
million gates, and processors can easily fit on these larger chips along with a
great deal of other circuitry. The 8051 CPU, can fit easily into one of the mod­
erate size devices. Large building blocks or IP cores (IP = intellectual property)
can be purchased from companies that specialize in their design. The core
chip building blocks include CPUs, memories, I/O devices, data converters,
and so on. These complex core building blocks can be combined on a single
chip to achieve “systems-on-a-chip” (SOC). This is made possible because
custom ASIC, and even FPGA devices, can accommodate a number of fairly
complex core blocks on a single chip. Custom ASICs have large non-recurring
expenses, but have the lowest cost in moderate to high volume. Large FPGAs
are very expensive (often hundreds of dollars each) so the large devices may
not be suitable for high volume applications unless they must be reprogram­
mable in the field. Some FPGA vendors are even promoting the idea that large
SRAM based FPGAs could be updated through the Internet. This would
allow the ultimate consumer to upgrade their hardware as easily as upgrading
the software.

159 CHAPTER SEVEN
Programmable Logic Devices

Chapter Seven Problems
1.	 How many pins would be required on a PLD in order to implement a

completely decoded memory and I/O address decoder for the design
shown in Figure 7-7?

2.	 For the problem above, make a revised version of Table 7-1, with the
input and output ports mapped to address FFFF hex.

3.	 Write the two equations necessary to map the I/O port select signals, /
IN_EN and /OUT_CK, of Figure 7-7 to respond only to address FFFF hex.

4.	 If a PROM is used to implement the PLD function above, how many
memory bits would be required? How many fuses would be required of
a PAL style version, using the PAL shown in Figure 7-6?

161 CHAPTER EIGHT8

Basic I/O Interfaces

Ultimately computers are useless unless they are connected somehow to the
outside world. This chapter emphasizes the connection of simple I/O (input/
output) devices to a microcontroller, directly and mapped into the processor’s
memory or I/O address space using a bus. We’ll also discuss more advanced
I/O techniques.

For embedded processors, I/O capabilities are among the most important factors
to consider when selecting a CPU. Typical microcontroller ICs have on-chip
bi-directional parallel ports, serial ports, and timer/counter devices. Many also
have specialized I/O for driving LCDs, analog-to-digital converters, pulse-
width-modulated (PWM) digital-to-analog outputs, complex pulse trains of
programmable width, and timers for period and frequency measurement, etc.
Some devices also incorporate special serial interfaces, intended for inter-chip
connections. These types of I/O are very specific to a particular processor chip,
and while they may require a lot of programming effort, they don’t require much
effort in the way of hardware design. However, interfacing an I/O device to a
processor data bus is a significant process that is equivalent to the memory to
processor interface design, and is subject to the same timing and loading analysis.

Direct CPU I/O Interfacing

The processors I/O pins may often be connected directly to simple devices, such
as key switches and LEDs. In some cases an interface circuit may be required to
convert the processor’s I/O voltage and current levels to those appropriate for the I/O
device. In order to understand which approach is appropriate, we’ll investigate the
capabilities of the processor’s I/O pins, using the 8051 as the primary example.

162 EMBEDDED CONTROLLER
Hardware Design

Our objectives in this section are to understand how the I/O port circuitry is
designed, how to interpret the relevant specifications, and the capabilities
limitations of the circuits. The 8051 Port 1 I/O pins will be used to illustrate
the unique characteristics of the quasi bi-directional circuits. The I/O port
DC specifications and absolute maximum ratings will be compared to the
requirements for driving a simple LED circuit. In addition, the I/O voltage
specifications will be explained and we’ll examine related protective circuits.

The characteristics of an external device must be considered in both the hardware
and software design. For instance, mechanical switches used for manual input
to microcontroller-based designs are prone to contact bounce, which causes the
connection to open and close several times within a few milliseconds. The pro­
grammer must ignore these bounce conditions to prevent multiple key actions.

Port I/O for the 8051 Family

The I/O ports are mapped into the SFR (special function register) address space
of the 8051, using direct access to the upper half of the internal data memory,
addresses 80 through FFh (h = hexadecimal). In this example, we will use
Port 1 on the basic 8051 device, which is the easiest port to describe since it
has no alternate functions. For example, Port 1 is mapped to internal location
90h. This port can be used for general purpose I/O. Port 1 also appears in the
bit addressable space as locations 90h to 97h. Port 1’s LSB (least significant bit)
is available at address 90h, and the MSB (most significant bit) is at address 97h
in the bit-addressable space.

Port 1 on the standard 8051 family parts can sink a few milliamperes, however
it can only source only 10 to100 microamperes. The entire port can be reset to
zero by moving the value zero to location 90h by executing the instruction:
MOV 90h,#0. The MSB (P1.7) could be set to logic one by setting bit number
97h executing the following instruction: SETB 97h. Bit P1.7 can be cleared to
logic zero by executing the instruction CLR 97h. Likewise, a single input bit
can be tested using a conditional jump instruction (such as JB 90h,address)
that will jump to the address only if the LSB of Port 1 (P1.0) is high when the
instruction is executed. You can easily observe this operation by using a logic
probe or meter connected to pin 1 of the processor chip, which is the LSB of
Port 1 (P1.0). The I/O pins will be in the logic one state after reset, but execut­
ing the CLR 90h instruction will clear P1.0. I/O pins can also be input directly

163 CHAPTER EIGHT
Basic I/O Interfaces

to another bit, such as the carry bit, which is very useful when sending and
receiving information by a serial bit sequence. This is a useful way to transfer
data and addresses between the processor and serial I/O and memory devices.

For example, to output eight bits to Port 1 the following instructions can be used:

MOV 90h, A ; Accumulator is output to port 1

MOV P1, A ; same as above, using the symbolic name for port 1

MOV P1,0ffh ; Output FF hex (all ones) to port 1

It is also possible to output a single bit, as shown below:

CLR P1.0 ; The LSB of Port 1 is cleared (made equal to 0, ~0 Volts)

SETB P1.0 ; The LSB of Port 1 is set (made equal to 1, ~5 Volts)

Likewise, eight bits can be input into the accumulator, using:

MOV A, P1 ; Acc<=port 1

Single bit input can be accomplished from Port one bit 1 to the carry bit:

MOV C, P1.1 ; Carry bit is loaded with the current state of P1.1

An input bit can also be used to control program flow:

JB P1.0, address ; Jump to address if bit P1.0 is 1, otherwise continue

Monitor commands can also be used to access the I/O pins on the SDK:

#P1 allows direct R/W of port 1

#SB 92 allows observing and set/clr of P1.2 bit

Port 1 can be accessed one bit at a time in the bit addressable address space
from 90h to 97h, which correspond to each of the eight bits of port 1. The MSB
(P1.7) can be accessed at bit address location 97h. The entire port can be reset
to zero by moving the value zero to location 90h executing the instruction:

MOV 90h,#0

The MSB (P1.7) could be set to logic one by setting bit number 97h executing
the following instruction:

SETB 97h

164 EMBEDDED CONTROLLER
Hardware Design

Bit P1.7 can be cleared to logic zero by executing the instruction CLR 97h.
Likewise, a single input bit can be tested using a conditional jump instruc­
tion, such as: JB 90h,address which will jump to the address only if the LSB of
Port 1 (P1.0) is high when the instruction is executed. You can easily observe
this operation by using a logic probe or meter connected to pin 1 of the pro­
cessor chip, which is the LSB of Port 1 (P1.0). Normally the pin will be in the
logic one state after reset, but executing the CLR 90h instruction will clear
P1.0. I/O pins can also be input directly to another bit, such as the carry bit,
which is very useful when sending and receiving information by a serial bit
sequence. This is exactly how the data and addresses are sent and received
between the processor and serial I/O and memory devices.

It’s important to recognize that some instructions modify the output latch,
rather than the input pin. This applies to instructions that read-modify-write
the output pins, such as ANDing the port with a constant value to mask certain
bits. This is necessary because the I/O pins can serve as input or output. Pins
which are to be used as inputs must be written with a logic one output first,
so that an external device such as a switch to ground, can pull the line low.
If the pins were used directly, then a pin that was being used as an input but
just happened to be low at the time that the logical AND operation was carried
out, would become stuck low! By performing the logical AND with the out­
put register instead, the state of the input pin will not be affected.

The internal circuits for the I/O pin are shown in simplified form in the figure.
The 8051 uses a modified open-drain output structure, which allows it to oper­
ate as either input or output, or even both at the same time. It consists of a constant
current pull-up (current source), an
N-channel MOSFET switch as a pull-
down device (FET sinks current).
The FET is an active switch, so it can
sink more current. That is why the
8051’s sink current is large compared
to source.

The simplified I/O port circuit diagram
in Figure 8-1 shows a pull-up resistor
providing a weak current source, and a
FET pull-down capable of sinking more
current. The input pin can also be read

+V

IOH

IOL

Port
Pin

In

Out

NMOS FET

Resistor
Sources
Current

Output
Sinks
Current

Figure 8-1: Simplified I/O port circuit.

165 CHAPTER EIGHT
Basic I/O Interfaces

by the input buffer. This allows the pin to be used as either input or output.
When using the pin as an input, the FET must be turned off by writing a one
to the output pin. Then an external device, such as a switch connected between
the pin and ground, will pull the input low when the switch is closed. When
using one of these pins as an input, an external pull-up is usually not re­
quired, as the pin is pulled up internally.

While the simplified representation approximates the behavior of the circuit,
in order to thoroughly understand how it behaves, we must go deeper. The
diagram in Figure 8-2 shows a somewhat more accurate version of the circuit,
which is referred to as a “quasi-

+V +V
Current
Source

bi-directional” circuit. The pull-up
is actually a current source, which
can source one of two currents.

“0” When the output is static in the “1”
Resistorhigh state, the current source Transistor Sources

OFF Switch Currentprovides about 50 microamperes (open) ON
of current to an external load. (shorted)

When the output pin transitions
from one to zero, the FET switches
on, sinking the source current and
the current from any output load to Figure 8-2: Quasi-bi-directional pin.

ground. The switch is not perfect, and has some resistance, which causes the
output voltage to rise somewhat above ground. If the current source is a resis­
tor, then the low-to-high output voltage transition would be very slow, due to
the R-C time constant formed by the resistor and the load capacitance. Even
with a small constant current source, the output voltage will ramp up slowly.
The current source in the 8051 behaves differently on a zero-to-one transition.
When the output pin transitions from zero to one, the current source provides
a much higher current for a very short time, pulling the output voltage up
quickly. Then the current source reverts to its lower value. This unique feature
of the output addresses the slow rise time problem by lowering the time con­
stant during the zero-to-one transition, without requiring an external input
device to sink more than 50 microamperes. A secondary benefit is that the pin
circuitry does not have to be explicitly programmed as an input or output, as
is the case with all other microcontroller families. This also means that the pin
can be used alternately for input and output, like an open-collector or open-
drain bus without concern for bus contention. This is useful for things like

166 EMBEDDED CONTROLLER
Hardware Design

shared request lines and multiprocessor communication. The disadvantage to
this type of I/O circuit is that it cannot source much current. The sink current
is greater than the source current, but still less than other microcontrollers.

Output Current Limitations

The output low (sink) current for the 80C32 is limited to approximately15
milliamperes maximum. That is an absolute maximum specification value,
meaning that output current in excess of this value can damage the device.
Shorting a low output to the power supply would damage the device. In
addition, the total sink current for an 8-bit port is limited to approximately
26 milliamperes. So if all the outputs of a port are low at the same time, they
can only sink a little more than 3 milliamperes each.

On the other hand, the current source will not supply any more than about
50 microamperes under static conditions, so it cannot be destroyed by shorting
an output to ground. The 80C32 current source also has an additional feature
that improves input noise immunity. The current that must be sunk by an
external device trying to pull the 80C32 pin low increases as it approaches
ground during a one-to-zero transition. That means that weak low going
noise pulses are less likely to cause an error.

+5 V
Let’s examine a simple case, that of driving a

LED which needs around 10 milliamperes to
 330 to

470 Ohmsbe clearly visible. In this case, we connect 80C32
the LED and a resistor to limit the current

1 LEDbetween the power supply and the processor Port 1

pin as shown in Figure 8-3. Bit 0

Figure 8-3: Driving a LEDThe LED will be off as long as the output
directly from a port pin.

pin is high. When the output pin goes low,
the output will sink current and the LED will turn on. LEDs have a relatively
constant voltage (1.5 to 2 volts typical) across them when they are operating.
If the LED has 2 volts across it, then the resistor has the remaining 3 volts across
it, then the current in the resistor and LED is 3 volts/330 ohms, or about 9
milliamperes. This will be enough current to light the LED, but it won’t be
very bright. Also, the processor would only be capable of lighting a couple of
LEDs. When more output current is required, other circuits can be used.

167 CHAPTER EIGHT
Basic I/O Interfaces

+5 V Figure 8-4 shows how an NPN

+

CPU Pin

Current

ON

Optional
Base Current

Limiting R

Sources

Turns
Transistor

330 to transistor can be used to amplify
470 Ohms the current from the processor’s

80C32
LED Typically output. The processor’s output
Requires from source current and transistor gain
10–20 mA for
Full Brightness limit the potential load current.

A special type of transistor, called
Output a Darlington transistor, has a very

Port 1 Sinks
Current high current gain, on the order Bit 0

of thousands. The CPU’s output
high current is multiplied by the
transistor’s gain, allowing much

Figure 8-4: NPN transistor for greater load current. more current to flow in the load.

In this case, the 50 microampere source current is multiplied by the transistor
gain, allowing more current to flow in the transistor collector, and hence the
resistor and LED. When the output pin is high, the LED is on. For 8051 family
parts, a current limiting resistor in series with the transistor base is not required,
since the current source limits the base current. Other processor outputs will
usually require the base resistor to limit the base current. The low source cur­
rent and transistor gain is a limiting factor in this case, along with the higher
saturation voltage on the collector-emitter output of the Darlington transistor
compared to a regular transistor. Note that the output voltage switched by the
transistor is separate from the processor supply, so this circuit can also be used
to switch much higher voltages, limited only by the transistor’s maximum
collector voltage specification. Yet another approach, using a PNP transistor
may be a better solution for high current loads.

+5 V

CPU Pin
Sinks
Current

ON when
Outpu LOW

80C32

Limiting R
1K to 4.7KPort 1

Bit 0

NMOS FET

Turns
Transistor

Base Current
This approach is shown in Figure 8-5. Transistor

Sources Using a PNP transistor so that the
Current

processor’s output greater output low toLoad

sink current to turn on the transistor,
330 toallows a standard transistor to be 470 Ohms

used in place of a Darlington device.
It also allows the output switch to

LEDcontrol a grounded load, which the
previous versions could not. For an
output low current of 1.6 milliam­
peres (one standard TTL load) and a Figure 8-5: PNP transistor output driver.

168 EMBEDDED CONTROLLER
Hardware Design

modest transistor gain of 50, the transistor will be switched on with very little
voltage across the transistor. Note that the LED will be on when the I/O pin is
low. When the processor is reset, all the output pins are set high. This is good
for loads that must star out without power when the device is first powered up.

+5 V	 80C32
Simplified

I/O Voltage Input Circuit
> Vdd+Vf

Forces Current
 –
Vf Substrateinto Pin
+ Diode

Input Current –
Limiting R Vf Substrate

+ Diode
I/O Voltage

< Vss–Vf
Forces Current

Out of Pin

Figure 8-6: I/O pin voltage limits.

Because of the way the transistor is
connected, this configuration does not
allow the load to be connected to a
supply voltage higher than that of the
processor’s. By combining the NPN and
PNP transistor circuits, it is possible
to switch higher voltages. Higher
voltages can cause problems on the
input pins if not properly protected.
The reasons for this are illustrated in
Figure 8-6.

Looking at the absolute maximum ratings for a chip, you will observe that
most device inputs must be kept within a diode’s forward voltage drop of the
power supply and ground. When turned on, a silicon diode has about a 0.6
to 0.7 volt drop across it. There are parasitic diodes from the input pins to
the power and ground signals, which are used to isolate the various internal
circuits on the chip from one another on the chip’s substrate. The substrate is
the foundation upon which all the transistors and other components are laid,
and is usually also the signal ground. The diodes can be turned on if the input
goes above the power supply or below ground, causing large currents to flow
in the chip. Even worse, these currents can cause a CMOS chip to “latch up,”
damaging or destroying the chip. This occurs because CMOS chips have four
layers, equivalent to a silicon-controlled rectifier (SCR), which shorts its outputs
as long as power is applied, once it has been triggered. The net effect is that
the CMOS chip will become a short between the power supply and ground,
causing large currents to flow, quickly heating up and even burning out the
entire chip. Generally this will occur in such a way as to burn out the most
expensive chip on the board, thereby protecting the 10¢ power supply fuse
from blowing out!

Voltages that exceed the chip’s allowable limits can be generated by overshoot
on the signals due to unterminated transmission lines, electrostatic discharge
(ESD) effects, or power transients. It can also be caused when an unpowered

169 CHAPTER EIGHT
Basic I/O Interfaces

device’s inputs are driven by a separately powered device. When power is
applied to the previously unpowered device, having the inputs at a higher level
than the supply voltage can cause latch-up. By using a resistor in series with
the input, as shown in the previous figure, it is possible to limit the current
in these conditions to a level which will not cause latch-up to occur.

The 80C32 parameters are different than other members of the 8051 family.
The Atmel 89C2051, a low cost 20-pin version, has greater output drive
capability than the 80C32. Depending upon which port is used and how it
is configured, the output capabilities can also vary, even on the same device.

Processors other than the 8051 family of devices frequently have different
characteristics, including: standard tri-state outputs with higher drive capacity
and data direction control registers, and much higher output source and sink
currents. For example, the Microchip PIC family of processors has devices that
are capable of sinking and sourcing up to 25 milliamperes per pin. Note that
the price for the higher drive capability is the requirement to write to the data
direction register for bi-directional I/O functions, and the potential for bus conten­
tion problems. Higher output drive on any microcontroller can be accomplished
using external power control devices, designed for driving motors, solenoids,
valves, and other larger loads. Some of these devices have additional features,
such as current limiting, over temperature shutdown, and so forth. Some also
have limited logic built in, and are often referred to as “smart power” devices.

There are several common types of I/O device which can be directly connected
to the processor, including simple switches, keypads, LEDs, and LCDs. Input
devices can be divided into three categories: simple switches, multiplexed
keyboards, and intelligent keyboards as used on the desktop PC. The displays
can also be divided into three groups: simple on/off indicators, multiplexed
LED or LCD displays, and intelligent display modules. People can also be
classified into three groups: those who divide things into groups, those who
do not, and those who have no opinion.

Simple Input/Output Devices

The switch is probably the simplest of all input devices, and one of the most
useful. Hardware interfacing is quite simple, and for CPUs that have internal
pull-ups like the 8051, all that need be done is connect the switch between

170 EMBEDDED CONTROLLER
Hardware Design

the pin and ground. As can be seen from Figure 8-7, the input will be a logic
one when the switch is open, and logic zero when the switch is closed.
Unfortunately switch contacts bounce when they are closed and sometimes
when they are broken. This causes
the output to oscillate briefly between
one and zero until the contacts stop
bouncing, usually after several milli­
seconds or more. As a result, the
program reading the switch state must
“de-bounce” the switch operation,
meaning that the switch transitions
must be ignored for some time after
the first transition between off and on.

Matrix Keyboard Input

+V +VInternal CPU

Resistor

Sources

Current

“1” “0”
Output

Switch Sinks
OFF Switch Current

(open) ON
(shorted)

Figure 8-7: Simple switch used as input.

The next step up in input complexity is the matrix keypad or keyboard. These
switch arrays are usually organized into a number of rows and columns, like
the 4-by-3 array of 12 buttons on a telephone. These matrix-connected devices
can be multiplexed to reduce the number of I/O lines required to sense the keys.
If a 4-row-by-4-column keypad were implemented using separate inputs, one
per switch, a total of 16 input pins would be required. Since I/O pins are almost
always at a premium, this is not the best approach.

By arranging the switch contacts to short the row and column lines corre­
sponding to their position in the matrix, the number of lines can be reduced.
By selecting one column at a time and looking for activity on any of the row
inputs, the program can determine which key has been depressed. One row
output can be driven low at a time, and the column input bits are read to see if
any of them are low. A low column input indicates that the switch belonging
to the corresponding row and column is closed. Multiplexing allows the rows
and columns to be scanned for activity under software control. In the case of
sixteen keys, only four columns and four rows would be required, or a total of
eight I/O pins, compared to 16 for the simple one input per switch approach.
For the processors like the 8051 with built-in pull-ups, the only thing that is
required is the key switch matrix. A key switch matrix like this can be imple­
mented very inexpensively by using a standard matrix keypad, or by attaching
steel switch domes to a PC board with row and column contacts, encapsulated

171 CHAPTER EIGHT
Basic I/O Interfaces

under an adhesive plastic sheet. An
Switches short row

+5V +5V +5V +5V

adhesive backed label can be printed and column together.
using a standard printer and covered
with another layer of clear plastic. Row 1 Output
The resulting keyboard will have a
custom graphic legend and be rela- Row 2 Output

tively impervious to contamination. Row 3 Output
The cost of this type of “click dome
membrane keypad” is also very low, Row 4 Output

whether you make it yourself or buy Column 1 Input

one from a manufacturer that special­
izes in these keyboards. Figure 8-8 Column 2 Input

shows the schematic of a multi- Column 3 Input

plexed keyboard matrix.
Column 4 Input

Even fewer I/O lines can be used if
Figure 8-8: Matrix keypad multiplexing.the rows are decoded using a 2-to-4

line decoder, and the columns are
encoded using a 4-to-2 line priority encoder. This approach will require only
four I/O pins. Using a 3-to-8 line decoder and an 8-to-3 line priority encoder,
it is possible to scan 64 keys using only six I/O lines.

A multiplexed keyboard can also be scanned using a dedicated matrix keyboard
IC, such as the 74HC922, which provides hardware controlled scanning auto­
matically as well as a separate interrupt output. This device can be mapped
into the external memory or I/O address space of a processor.

Matrix Display Devices

Simple output indicators, such as the simple LED indicators presented previ­
ously, can be very useful, but similar problems arise when using multiple LEDs
each driven by a single I/O pin. Once again, the LEDs can be arranged in a
matrix, and driven by multiplexing rows and columns of devices. As long as
the LEDs are scanned quickly enough, at least 15 or 20 times per second, the
LEDs appear to be on continuously. This works because of a perceptive charac­
teristic of human vision, known as persistence of vision (POV). Many devices,
including television and computer CRT displays depend on this characteristic
of human vision. Many LED display alarm clocks use multiplexing, as do

172 EMBEDDED CONTROLLER
Hardware Design

many other types of displays, such as most LCDs. In each case, the flicker of
the display is normally not apparent to the observer. You can see the strobe-
like effect by waving your fingers quickly in front of a multiplexed display.

An array of LEDs or seven segment numeric LED displays can be illuminated
this way, using many fewer I/O pins than would be required by using one pin
per LED, as shown in Figure 8-9.

+5 V

Row (Segment)
Drivers

LEDs

Digit (Column)
Drivers

Figure 8-9: Multiplexed LED display.

The display is scanned, or refreshed, by activating the column, and then the
row bits that correspond to the LEDs in that column which should be lit. The
display is left on for a short period, then switched to the next column and
row, and so on. As long as the display is refreshed frequently enough, there is
no visible flicker.

Another type of display is the LCD. The simplest of these is just a glass panel
with extremely thin metalized connections to the segments. These are rather
complex to drive directly from most microcontrollers, but there are two ways
that they can be connected without much effort. The simplest, but more
expensive approach, is to use an intelligent LCD module complete with the
drive electronics. Most of these devices use a standard controller, and can be
driven using either a 4-bit bus or an 8-bit bus. Serial input devices are also
available, which can be driven directly from a standard RS-232 serial port. They
are available in text-only display versions, ranging in size from one row of 16

173 CHAPTER EIGHT
Basic I/O Interfaces

characters to four rows of 40 characters. Graphic display versions of these
modules are also available, allowing flexible text and graphic display formats.

Another method of driving small glass displays directly is through special LCD
display driver chips, which are designed to drive a relatively simple display
(such as one containing simple 7-segment numeric digits, for example).
These peripherals are available from several vendors, and the LCD display
peripheral driver hardware is even incorporated in some microcontrollers.

Many other types of I/O can be added externally using the processor’s bus
interface. The 82C55 chip is a commonly used parallel interface with two 8-bit
ports and two 4-bit ports which can be programmed as inputs or outputs.
Connecting an 82C55 to the 8051 bus using memory mapping is an example
of a program controlled I/O interface.

Program-Controlled I/O Bus Interfacing

In this form of I/O, the processor communicates with I/O devices in essen­
tially the same way it communicates with memory. The program running in
the CPU must check the availability of data and transfer it, one piece at a
time. The processor puts an I/O address on the bus, indicates the type of
transfer, either read or write (I/O read or I/O write cycle for processors with
an I/O address space). The CPU uses activates its control lines, and then
transfers the data to or from the selected I/O device. The 8051 does not have
an external I/O space, so these devices must be mapped into the external data
memory address space. Processors with a separate I/O address space, such as
the x86 family, have input and output instructions that cause the CPU to
generate the appropriate I/O read and I/O write instructions respectively.
Processors with a single address space, such as the 68000 family, have no I/O
instructions. They use memory mapped I/O, so both software and hardware
treat the I/O addresses in the same way as memory.

An I/O interface connects the actual I/O device, such as an LED, a switch or a
printer, to the CPU. The job of the designer is to design an interface that meets
the requirements of both the I/O device and the bus. While memory devices
only read or write data, I/O devices may perform other operations as well. A
typical I/O interface has several addresses, usually referred to as I/O ports or
I/O registers, for different types of information such as data, commands, and

174 EMBEDDED CONTROLLER
Hardware Design

status. These registers are the “window” through which the programs must
monitor, control, and communicate with the corresponding I/O device. Three
types of information are typically exchanged through this window: commands
from the CPU to control the I/O device, status of the I/O device to the CPU,
and the actual data to be transferred. Many interfaces have I/O registers corre­
sponding to these three types of information as follows:

•	 Command Register. This is sometimes referred to as the control register.
This register is written by the CPU to control things such as the operating
mode of the I/O device, direction of data transfer, enabling or disabling the
use of parity, interrupts, and so on. Usually each bit or field of bits is used
to control a specific function, but the commands may also be encoded in a
way equivalent to that used for encoding information in the CPU instruc­
tion op codes. Several of these “control words” may be required to initiate
I/O operations. Control words written to the command register would be
instructions to the I/O interface on how to perform a specific type of trans­
fer. In some cases the command register is “write-only,” meaning that the
information that is written into this register cannot be read back by the CPU.

•	 Status Register. This register indicates the state of the I/O device at the
time the register is read. The bits in this register typically indicate things
such as the availability of data to be input as from a keyboard, or output
as to a printer. By reading the status register, the program running in the
CPU can determine when to transfer data and the presence of errors,
among other things. Typical status bits would be “input data ready,” or
“output data register full.” Sometimes the status register is “read-only,”
meaning that the information in this register can only be controlled by
the I/O interface and cannot be written to or modified by the CPU.

•	 Data Register. This register contains the actual data to be transferred to or
from the I/O device. In some cases two separate registers and I/O addresses
are used for input and output data, but in most cases they share the same
address. Reading or writing information to this register will generally affect
one or more status bits indicating the availability of data for the CPU or
the I/O device. For example, when the I/O device has data ready for input,
it would set the “input data ready” bit of the status register, and when the
CPU reads the data register, the “input data ready” bit would be reset.

The process of testing a ready status bit is referred to as polling the device to
see if it is ready for data transfer. Before any data can be transferred, the status

175 CHAPTER EIGHT
Basic I/O Interfaces

register must be polled to determine if the device is ready. If the program is
written to loop continuously waiting for the device to become ready, a lot of
CPU time is wasted if the data is not available shortly after the polling begins.
An example would be a keyboard, where keys are pressed at relatively slow
and unpredictable rates. In order to minimize the time wasted in polling for
these irregular data, interrupts are used. An interrupt is triggered by an event
that is not synchronized to the main program and calls a special subroutine,
referred to as an interrupt service routine (ISR that transfers the data. This
“on-demand” processing is more efficient when data rates are relatively slow
or unpredictable. At the other extreme however, when peak data transfer rates
are high as they are in a disk drive, another technique that reduces the amount
of work the CPU must do to transfer I/O data is used. The I/O interface trans­
fers data directly between the I/O device and memory without CPU interven­
tion using direct memory access (DMA).

Real-Time Processing

Some applications demand that the CPU respond to external events and pro­
cess them in a finite amount of time. Real-time processing means that data are
processed at the same rate that they occur. They are event-driven which means
they are triggered by external events, such as the tick of a clock, completion of
I/O, etc. Examples of real-time PC programs are the flight control program on
the Space Shuttle, arcade games, speech processing software, and flight simu­
lators. Examples of non-real-time PC programs would be word processors and
accounting programs.

Direct Memory Access (DMA)

Direct memory access (DMA) requires that the I/O interface be active and semi-
intelligent, since it must count the words and increment the memory address
for each element transferred in addition to performing the actual transfer.

The transfer process involved with DMA is typically as follows:

1) The program writes into the I/O control register of the interface:

a) The type of transfer (I or O).

b) The number of bytes or “block size” to transfer.

176 EMBEDDED CONTROLLER
Hardware Design

c) The physical address in memory where the data will be transferred.

d) A start command is given to begin the transfer.

2) Data is transferred directly between memory and I/O devices under control
of the I/O interface.

3) When the transfer is complete, the I/O interface sets a completion bit
in the status register, and may also initiate an interrupt to the CPU.

Figure 8-10 compares program-controlled and DMA I/O.

Direct memory access is
used for high speed I/O.
The I/O device interface
takes over the bus from
the CPU and controls the
transfer of data between
memory and I/O directly,
without any intervention
by the CPU (as shown
in Figure 8-10). Data is
generally transferred in
larger blocks, such as a
disk file block.

Devices on a bus can talk
with each other without

CPU I/O

Program Controlled I/O

Memory

DMA (Direct Memory Access) I/O

CPU I/OMemory

Figure 8-10: Program controlled versus DMA I/O.

talking with the CPU, except to tell it when done. DMA is good for disk and
network transfers because the rates are much higher than the CPU can handle
using program controlled I/O. There are two ways of doing DMA transfers:
single cycle DMA and burst DMA modes.

Burst vs. Single Cycle DMA

In burst mode DMA, the DMA device gets control of the bus, transfers a whole
block of data (a disk sector, for example), and then releases the memory back
to the CPU. A single cycle DMA device gets the bus, transfers just one word of
data, and releases the bus. Arbitration is the process of determining what device
will have control of the memory bus.

177 CHAPTER EIGHT
Basic I/O Interfaces

Burst mode has low overhead and can handle the highest peak data rates, but
the CPU can get locked out of memory for intervals that are as long as the
longest block to be transferred. If the transfer is longer than the shortest inter­
rupt interval, such as the real time clock tick interval, interrupts can get lost.

Cycle Stealing

In this mode, DMA transfers are completed during bus cycles that are not used
by the CPU, so no arbitration needs to be done. Most modern, high performance
processors utilize almost 100% of available memory bandwidth however, so
there isn’t much available for DMA. To save time, it is possible to perform
arbitration and data transfer overlapping in time.

In general, burst mode DMA is more effective when relatively short time
durations are needed to transfer the data block. Under those conditions, the
bus is fully utilized for a short time interval. The DMA controller acquires
access to the memory, transfers an entire block of data, and then releases the
memory. An entire block of data is transferred in one short burst. The disad­
vantage is that a burst mode DMA device “hogs” the bus, thus preventing any
other device from accessing memory during the burst. If the burst lasts too
long, it may prevent the CPU from servicing certain time critical events, such
as the real time clock interval (clock tick). In that case, the clock would run
slower than it should because it would cause the CPU to miss some of the
clock ticks. Therefore, burst mode DMA is most effective for data that is trans­
ferred at a high peak rate for short intervals. Typically, the data within a burst
comes in too quickly to allow the arbitration handshaking required for the
DMA controller to acquire and release the data between each data element.
An example of this situation is the transmission or reception of data on a
high-speed local area network interface. Small packets of data come across
the network in high-speed (less than one microsecond per byte) bursts, with
relatively low packet rates (milliseconds between packets).

For single cycle mode, the DMA controller acquires access to memory, transfers
one word, and releases the memory. That allows other memory transfers to be
interleaved with the DMA. That is why this mode is also referred to as “inter­
leaved DMA.” Single cycle DMA is better suited to transferring data over longer
periods of time, where there is enough time to acquire and release the bus for
every word transferred. In this case, the CPU and other devices can still access

178 EMBEDDED CONTROLLER
Hardware Design

the memory, at a reduced bandwidth. As a result, the CPU may be a bit slower
because it will sometimes have to wait for a DMA cycle to complete, but it is not
entirely shut out when a DMA transfer is in progress. When a single cycle DMA
transfer occurs, more time is used in acquiring and transferring control of the
memory to and from the DMA controller since it happens so much more fre­
quently. This “overhead” frequently reduces the overall available memory band­
width, especially when it is performed sequentially with the data transfers. Some
systems overlap the memory bus arbitration handshaking with the memory
data transfers so that the arbitration does not slow down the data transfers.

Direct memory access is required when the CPU is too slow to transfer the
data under program control. Because the CPU does not have to participate
directly in the item-by-item transfer of data, DMA is also useful when there
are other tasks that the CPU can perform. In those cases, DMA transfers may
be used even though they are not strictly required by the data rate.

Elementary I/O Devices and Applications

Parallel ports are the simplest form of I/O, but there are many different types of
electrical interfaces ranging from the simple open collector TTL outputs used
on a PC printer port to high-speed peripheral interfaces such as the IEEE-488
and SCSI buses. Most embedded controller ICs have some pins that are config­
urable as parallel input or output. These interfaces are appropriate for simple
I/O, such as key switch and display interfacing. They are also appropriate for
controlling and monitoring high-level interfaces such as solid-state relays.

The parallel I/O ports available on the 8051 family and similar processors are
fairly versatile, with special internal circuitry to allow a port bit to be config­
ured individually as an input or output. Some microcontrollers also provide
considerable current source and sink capability, however the 8051 family
parts are usually fairly weak in that regard.

Serial ports, also referred to as asynchronous or synchronous communications
(COM) interfaces, are commonly used to interconnect with devices, such as
modems, which inherently transmit the data one bit at a time over a commu­
nication link such as a phone line. The RS-232 serial interface used in a PC’s
COM port is an asynchronous serial data stream. An asynchronous interface

179 CHAPTER EIGHT
Basic I/O Interfaces

has no explicit clock signal to synchronize the transfer of data. The timing of
bits is based on the absolute bit rate, and is synchronized on every character
with a start bit. The serial to parallel conversion is performed by a UART
(universal asynchronous receiver-transmitter). When transmitting data, the
UART appends a start bit before the data, shifts out the data LSB first, and
adds a stop bit after the data. Once the transmission is complete, the UART
sets a status bit indicating that the data has been sent and that it is ready to
begin transmission of another character.

When receiving data, the UART looks for and synchronizes to the leading
edge of a start bit. Then, it delays for one and one-half of a bit period, so that
it samples the LSB in the middle of the bit period. Then, the UART delays one
bit period, samples the next to the LSB, etc. until all the bits have been shifted
in. Once all the data has been received, it is loaded into a buffer register and a
status bit is set to indicate that the receive buffer contains a character and may
be read by the CPU. In order for this method to work, the two UARTS at each
end of the communication must have bit rate clocks that are accurate enough
to guarantee that the data will be sampled at the right time. This typically
requires a sample clock that is 16 times the data rate, accurate to 1% to 2%.

Timers and counters, which are present in most microcontroller chips, allow
generation of pulses and interrupts at regular intervals. They can also be used to
count pulses and measure event timing. Some of the more sophisticated versions
can measure frequency, pulse width, and relative pulse timing on inputs.
Outputs can be defined to have a given repetition rate, pulse width, and even
complex sequences of pulses in some cases. In most cases, one of the timers
can be used to generate the necessary serial clocks required to operate a
microcontroller’s on-chip UART. In order to meet the approximately1% clock
frequency accuracy for the 16x data rate clocks, the crystal frequency is often
chosen to allow exact integer division of the crystal frequency resulting in an
accurate, standard serial data rate. This is why 8051 family parts that use their
internal counters and serial port to connect to standard 9600 bps and higher
data rates use the crystal frequency 11.059 MHz rather than an even 12 MHz.

Analog to digital converters (ADCs) and digital to analog converters (DACs)
are used to convert continuously variable real world parameters to digital
form and back to analog. Examples include conversion of the output voltage of
a temperature sensor into digital form for processing, and converting control

180 EMBEDDED CONTROLLER
Hardware Design

values back into analog form to adjust the temperature. Most of the quantities
of interest in the real world tend to be continuous and analog in nature, so
these converters are critical for many applications.

Timing and Level Conversion Considerations

Depending upon the rate and load on the processor, peripherals can be inter­
faced using interrupt driven, program controlled, or DMA I/O. High speed
devices will generally require DMA, while devices that generate small amounts
of data at unpredictable times are better handled with interrupts and program
controlled I/O.

Level Conversion

Many types of devices that need to be interfaced to the processor are not
compatible with standard logic levels. For example, many serial interfaces
comply with an interface standard, such as the EIA RS-232 specification,
which defines the voltage level and pin out. RS-232 levels are nominally plus
and minus 12 volts, instead of the 0 to 5 volt levels that most processors use.
As a result, level shifting devices are needed to translate between the 0 to5
and +/-12 volt signals. Single ICs that provide the translation as well as gener­
ating the +/-12 volt supplies from a single +5 volt supply, are now available
(Maxim MAX232 and others), making this much easier for embedded
system designers.

Intermediate DC voltages can often be handled using simple open-collector
outputs, or a separate transistor and pull up resistor to drive output voltages
higher than the logic supply. Power switching FETs are also available that can
handle relatively high currents and voltages, and can be driven directly by
logic-level outputs.

Power Relays

High-level outputs, such as 110 volt AC loads, must be switched using solid
state or magnetic relays. The magnetic relay windings are inductive coils that
must be clamped using a diode to prevent large inductive transients from

181 CHAPTER EIGHT
Basic I/O Interfaces

damaging the relay driver circuits. Solenoid valves and other devices are used
to control external flow and have similar inductive characteristics. Solid-state
relays are much easier to use, as they are isolated from the high voltage and
provide a simple logic level interface. Optical isolation is also used to sense high
voltage inputs and convert them to logic levels. There are even standardized
modules (OPTO-22 and equivalents) available that can be interchanged with
each other, resulting in very flexible configuration options.

Chapter Eight Problems
1.	 Using an 8031 Port 1 I/O bit, design an interface to an LED that requires

20 milliamperes of output current for full brightness.

2.	 A DMA device transfers blocks of data consisting of 256 bytes, and the
bytes in the burst are spaced 10 microseconds apart. The real time clock
tick interval is 1 millisecond. What kind of DMA should be used, burst
mode or single cycle?

3.	 If an 8031 CPU executes one instruction per microsecond, estimate
the maximum rate that data can be transferred to or from an I/O port,
assuming that a status bit must be polled before transferring data.

4.	 Design a 4-row by 3-column telephone keypad matrix for connection to
the 8051 Port 1 pins, to be polled using software scanning.

183 CHAPTER NINE9

Other Interfaces

and Bus Cycles

There are two kinds of interrupts software and hardware. Software interrupts
are just another kind of subroutine call that can be used to access subroutines
with entry points at fixed memory locations. Operating system services are
often accessed using software interrupts, which are simply instructions that
cause an interrupt subroutine to be called at whatever point in the program
they are placed. These interrupts are synchronized with the program in that
they always occur at the same place in the program. They are referred to as
“synchronous events because their execution is solely dependent upon the
sequence of execution of the program instructions.

Some processor manufacturers refer to “traps” or “exceptions,” but these are
synonymous with the term “interrupt” as used here, which may be either a
hardware or software interrupt. Unless otherwise specified, however, the word
“interrupt” is generally used to imply a hardware interrupt. Hardware interrupts
are triggered by a physical event, such as the closure of a switch, that causes a
specific subroutine to be called. They can be thought of as a sort of hardware
initiated subroutine call. They can and do occur at any time in the program,
depending on when the event occurs. These are referred to as “asynchronous
events because they may occur during the execution of any part of the program.
Interrupts allow the programs to respond to an event when it occurs. In a
printing application, the printer may interrupt the processor to inform the
program that it has printed all the data in its buffer and is ready for more. A
serial interface might activate an interrupt to indicate that a character has been
received and it is available to be processed. These kinds of applications are “event
driven” because no action will take place until an event occurs. In the case of
a typical embedded application, event driven programs are used when it is
necessary to respond to an external event within a fixed time period. A system

184 EMBEDDED CONTROLLER
Hardware Design

that has to respond to, and then process, an event in a fixed amount of time
is referred to as a real-time system.

Interrupt Cycles

When a hardware interrupt request is enabled and activated, the CPU saves its
current program counter and performs an interrupt cycle in place of the usual
program fetch cycle. The interrupt cycle typically consists of the interrupt
source identification and the transfer of the interrupt vector information. The
interrupt vector is often a pointer to the place in memory where the address of
the interrupt service routine is stored. The CPU will then fetch that address and
perform what amounts to a subroutine call to that address. When the interrupt
subroutine has completed processing of the event that caused the interrupt,
the processor executes a “return from interrupt” instruction and goes back to
the part of the main program that was executing before the interrupt occurred.

Software Interrupts

A software interrupt is a special subroutine call. It is synchronous meaning that
it always occurs at the same time and place in the program that is interrupted.
It is frequently used as a quick and simple way to do a subroutine call for
accessing programs such as the operating system and I/O programs. A disk
operating system used on the PC uses interrupt number 21 (hex) to invoke
operating system functions such as reading a disk file, output data to the
printer and so on. For the purposes of this chapter, the word “interrupt” by
itself will be taken to mean a hardware interrupt.

In Chapter Six, we looked at the 8051 processor’s program read, data read,
and data write cycles. However, most processors also have other types of bus
cycles, including special cycles for processing hardware interrupts.

Hardware Interrupts

A hardware interrupt can be thought of as hardware induced subroutine call.
When an external event—such as the pressing of a key—occurs, an interrupt
subroutine is called to store the key code for later use. This type of event­

185 CHAPTER NINE
Other Interfaces and Bus Cycles

driven subroutine call is asynchronous meaning that it can occur at any time
and place in the program that is interrupted. Interrupt latency is the term
used to describe the amount of time from when an event occurs (such as the
pressing of a key) until the interrupt subroutine begins execution.

Among the factors that determine latency are:

•	 Hardware, which determines the time the CPU requires to process the
request and acknowledge sequences (fixed hardware time).

•	 The time required to get a vector and load it into the processor (“vectored”
interrupts will be discussed later in this chapter).

•	 Sequences of code with interrupts disabled add directly to latency.

•	 Higher priority interrupts overriding the current interrupt (the time a
high priority takes to execute adds directly to the latency of lower priority
interrupts). This is reduced by keeping ISRs as short as possible.

Figure 9-1 shows a common
hardware interrupt situation—
handling a pressed key on
the PC’s keyboard. Figure 9-2 Interrupt Request

shows the timing sequence for Interrupt Acknowledge

handling the interrupt service Interrupt Vector

routine (ISR) required to

Interrupt
ControlInput

Port

Data
Data ReadyKeyboard

Circuit

process the key press event.
Figure 9-1: Keyboard interrupt.

CPU

Figure 9-2: PC
keyboard interrupt
timing sequence.

Data Ready

Interrupt

Request IRQ

Interrupt

Acknowledge INTAK

CPU Bus Vector

Interrupt to Latency

Ke
yb

oa
rd

:

“C

ha
ra

ct
er

 R
ea

dy
”

In
te

ru
p

t
C

on
tr

ol
le

r
to

 C
PU

:

“I

nt
er

ru
p

t
Re

q
ue

st
ed

”

C
PU

:

“O

K,
 W

ha
t

In
te

rr
up

t
N

o.
?”

C
PU

:

“I

nt
er

ru
p

t
Re

ce
iv

ed
”

In
te

ru
p

t
C

on
tr

ol
le

r:

“I
nt

er
ru

p
t

Re
q

ue
st

 C
om

p
le

te
”

IS
R

Be
gi

ns

Ex
ec

ut
io

n

IS

R
Re

ad
s

C
ha

ra
ct

er

an
d

C
le

ar
s

Re
ad

y
Bi

t

186 EMBEDDED CONTROLLER
Hardware Design

Interrupt Driven Program Elements

When an interrupt is processed, here is a detailed sequence of typical
elements involved:

1) Initialization executed once)

a.	 Disable interrupts (always do this first!).

b. Clear buffers/ pointers/ flags.

c.	 Store address of ISR(s) in vector table.

d. Initialize interrupt hardware.

e.	 Clear any interrupt requests.

f. Enable interrupts and enter MAIN routine.

2) Main routine (executed many times, when no interrupts are pending)

a.	 Performs processes that are not time critical, such as diagnostics.

b. Access any resource that is NOT re-entrant.

c. Wait for interrupts to occur.

3) Interrupt service routine (ISR) executed once per interrupt)

a.	 Save processor state: registers, flags, interrupt level, etc.

b. Process the event (what we really wanted to do in the first place).

c.	 Restore processor state: registers, flags, interrupt level, etc.

d. Enable interrupts (may be located at different points in the ISR,
depending on requirements).

e.	 Tell interrupt controller we are finished processing this interrupt
return from interrupt.

Re-entrant code or a re-entrant routine is code that can be interrupted at any
point when partially complete, then called by another process, and later return
to the point where it was interrupted to complete the original function with­
out any errors. Non-re-entrant code, however, cannot be interrupted and then
called again without problems. An example of a program that is not re-entrant
is one that uses a fixed memory address to store a temporary result. If the
program is interrupted while the temporary variable is in use and then the
routine is called again, the value in the temporary variable would be changed.
When execution returns to the point where it was interrupted, the temporary
variable will have the wrong value. In order to be re-entrant, a program must
keep a separate copy of all internal variables for each invocation. Re-entrant

187 CHAPTER NINE
Other Interfaces and Bus Cycles

code is required for any subroutines that must be available to more than one
interrupt driven task.

Interrupts can be processed between execution of instructions by the CPU any
time they are enabled. Most CPUs check for the presence of an interrupt request
at the end of every instruction. If interrupts are enabled, the processor saves
the contents of the program counter (PC) on the stack, and loads the PC with
the address of the ISR. Some CPUs allow certain instructions to be interrupted
when they take a long time to process, such as a block move instruction.

Critical Code Segments

Let’s suppose there are two processes that both require occasional use of the
printer. In a system that allows a task to be interrupted at any time by another
task, simple binary flags will not be reliable. In the example below, two tasks
are contending for access to the printer. The flag indicates whether the printer
is in use, and is set equal to one to signal other tasks to wait until the printer
is available. The premise is that each process will wait until the printer is free
before attempting to print. Unfortunately, in an interrupt driven system, that
will not always work. The example below shows when it can fail.

Process A:
1 ACC := Flag

2 Test ACC=0? if not,

go to start ^

3 if ACC=0:

4 Flag := 1 “printer in use”

Access printer

Flag := 0 “printer

not in use”

Printer Flag = 0 not in use

 = 1 in use

 Process B:
ACC := Flag

Test ACC=0? if not,

go to start ^

if ACC=0:

Flag := 1 “printer in use”

Access printer

Flag := 0 “printer

not in use”

Notice that if process A is executing instructions 1 to 4 and is interrupted by
process B, then there will be two copies of the flag, one in process A’s accumu­
lator and another in process B’s accumulator. As a result, both processes will
test the flag in their local accumulator, set the flag, and proceed to use the printer.

188 EMBEDDED CONTROLLER
Hardware Design

The output on the printer from the two processes would be intermixed, even
though each process appears to have exclusive access, from the data available
to each process. The problem occurs because there are two copies of the flag.
The sequence of instructions 1 through 4 cannot be interrupted without the
potential of improper operation. Such a sequence is referred to as a critical code
segment that cannot be interrupted without risk of producing incorrect actions.

Semaphores

One way to fix the critical code segment problem in the preceding paragraph
problem would be to disable interrupts before instruction 1, and re-enable
them after instruction 4. While this will solve the problem, this solution adds
to interrupt latency. A more efficient solution is the use of a semaphore instead
of a simple binary flag. A semaphore is a multiple state variable that can be
tested and set in one operation (the test and set operation cannot be inter­
rupted). Here is an example of using a semaphore:

Process A

Start:

INC flag;

look for FF => 0 change

if result non-zero

then DEC flag

go to Start

else

if result = 0 then

Use Printer

...

Use Printer:

(access the printer)

DEC flag

 Process B

Start:

INC flag;

look for FF => 0 change

if result non-zero

then DEC flag

go to Start

else

if result = 0 then

Use Printer

...

Use Printer:

(access the printer)

DEC flag

printer semaphore: >= 0 printer in use

= FF hex, printer not in use

Note that the INC instruction has the ability to test and set the semaphore in
one instruction. The semaphore is incremented and the status flags are set in
the same instruction. Since an interrupt can only occur between instructions,
there is only one instance when the semaphore variable makes the FF to zero
transition. If other processes increment the semaphore they will increment

189 CHAPTER NINE
Other Interfaces and Bus Cycles

from zero to one or more. The first process that increments the variable from
FF hex to zero gets exclusive access to the printer. This is guaranteed because
the test and set operation is an indivisible operation, which is the key charac­
teristic of the protection mechanism of a semaphore. It is important to note
that increments and decrements must be paired. The semaphore is more
powerful than a flag because the processes can all share the printer resource
under this scheme. Only the first process using a resource locks out all others.
The first process seeing the FF to 0 transition gets the resource.

The 8051 only has one instruction that performs the necessary indivisible test and
set operation, the “decrement and jump if not zero” or DJNZ. Most processors
have instructions that can be used for the semaphore test and set operation.

Interrupt Processing Options

There are a number of variations in the way interrupts can be handled by the
processor. These variations include how multiple interrupts are handled, if they
can be turned off, and how they are triggered. Some processors allow multiple
(nested) interrupts, meaning the CPU can handle multiple interrupts simulta­
neously. In other words, interrupts can interrupt interrupts. When multiple inter­
rupts are sent to the CPU, some method must be used to determine which is
handled first. Here are the most common prioritization schemes currently in use.

•	 Fixed (static) multi-level priority. This uses a priority encoder to assign
priorities, with the highest priority interrupt processed first. This is the
most common method of assigning priorities to interrupts.

•	 Variable (dynamic) multi-level priority. One problem with fixed priority is
that one type of event can “dominate” the CPU to the exclusion of other
events. The solution is to rotate priority each time an event occurs. This
ensures that no interrupt gets “locked out” and all interrupts will eventu­
ally be processed. This scheme is good for multi-user systems because
eventually everyone gets priority.

•	 Equal single-level priority. If an interrupt occurs with an interrupt, the
new interrupt gains control of the processor.

Some types of interrupts can be turned on or off under program control.
Maskable interrupts are those that can be enabled and disabled by the CPU.
These are used for non-catastrophic events, such as a key being pressed. In

190 EMBEDDED CONTROLLER
Hardware Design

contrast, non-maskable interrupts (NMI) cannot be enabled for disabled by
the CPU. These are reserved for catastrophic events such as a power failure
or parity error. Non-maskable interrupts are usually edge triggered (see next
section) because we want to “remember” the event before it goes away.

Level and Edge Triggered Interrupts

An interrupt can be level or edge triggered. A level interrupt depends on the logic
value, or level, when the interrupt signal is sampled by the CPU at the end of
an instruction execution cycle. In contrast, an edge triggered interrupt occurs
when a change, or edge transition, occurs in the sampled interrupt signal.

In level triggered interrupts, the interrupt request input signal is sampled by
the CPU at the end of each instruction execution, as shown in Figure 9-3.

CPU

Instruction
 Fetch Execute Fetch Execute Fetch Execute

IRQ

Activity

Interrupt Request Sampling Times

Figure 9-3: CPU sampling of level sensitive interrupt.

In this type of interrupt the IRQ line is sampled by the CPU, so there is a
potential problem if the IRQ line goes active and inactive between samples.
If the request goes away before it is sampled, the CPU will miss the interrupt.
Also, if the interrupt request is still active when the processor has completed
processing of the interrupt, it will be called and executed again.

The timing diagram of an edge triggered interrupt is shown in Figure 9-4. When
there is an edge on an edge sensitive IRQ, it is latched inside the CPU until it
is processed. Figure 9-4 shows an interrupt that is sensitive to falling edges.

CPU

Instruction
 Fetch Execute Fetch Execute Fetch Execute

Activity

Edge Sensitive IRQ

CPU Internal IRQ

Figure 9-4: Edge sensitive interrupt.

191 CHAPTER NINE
Other Interfaces and Bus Cycles

When IRQ goes high, Q goes high untilIt is possible to do the same latching
with an external circuit to make a Clear pulses high, then Q goes down.

To Level level sensitive interrupt into an edge +5

>
Clear

D Q Sensitive
triggered interrupt by using a flip/ Interrupt

Edge Input of CPUflop to latch the request as shown
Sensitive

in Figure 9-5. When IRQ goes high, IRQ

Q goes high until Clear pulses high, Interrupt Reset

Q goes down. Figure 9-5: Edge to level from CPU
sensitive interrupt conversion circuit.

As a general rule, use edge triggering when the interrupt pulses are very long
or very short. Figure 9-6 shows a situation where the request pulses are very
long, such as the 60 Hertz square wave that is often used for clock functions.
A level sensitive interrupt input would generate multiple interrupts per 60
Hertz cycle. By using an edge sensitive input, there is only one interrupt since
there is only one falling edge per cycle. Figure 9-7 shows the opposite situa­
tion: very short interrupt pulses. When the pulses are very short, the CPU
could miss interrupts as shown below. An edge sensitive input will latch the
interrupt until it can be processed.

CPU
Interrupt
Sampling

Clock

Figure 9-6: Long interrupt request cycles require edge sensitive input.

CPU
Interrupt
Sampling

IRQ

Figure 9-7: Short interrupt request pulses require edge sensitive input.

However, there are conditions where level triggering is preferable. When inter­
rupt signals overlap, interrupts may be missed if an edge sensitive interrupt
were to be used, as
shown in Figure 9-8. IRQ1
This problem occurs

IRQ2on a machine where
multiple interrupts IRQ
are combined on one to CPU

request line, as shown Figure 9-8: Overlapped requests require level sensitive input.

192 EMBEDDED CONTROLLER
Hardware Design

in Figure 9-9. This is typical of a microcomputer bus with shared interrupt
request signals on the bus, and for devices that are capable of generating
multiple interrupts simultaneously. This is often implemented by connecting
multiple open-drain or open-collector,
active low requests to the interrupt request
line with a pull-up resistor. This allows
multiple devices to use the same /IRQ line.

IRQ1
IRQ to CPU

IRQ2

Figure 9-9: Multiple interrupts
on a common bus.

An edge triggered system would sense only one edge, and thus it may miss
IRQ2 whereas a level sensitive system will respond to both. An example of
this condition in the 8051 CPU is the serial I/O port interrupt. The “receive
buffer full” and the “transmit buffer empty” signals are combined as shown
above to a common level-sensitive internal interrupt request. If the receive
buffer happened to be filled and the transmit buffer emptied at the same time,
there would only be one edge, due to the overlapping requests. Thus, a level
sensitive input is required to guarantee that both interrupt will be serviced.

Vectored Interrupts

In a vectored interrupt system, the interrupt request is accompanied by an
identifier, referred to as a vector or interrupt vector number that defines the
source of the interrupt. The vector is a pointer that is used as an index into a
table known as the interrupt vector table. This table contains the addresses of the
ISRs that are to be executed when the corresponding interrupts are processed.
The 8051 CPU architecture does have separate interrupt vectors for different
interrupts, but it does not have an interrupt vector table. Instead, each interrupt
is assigned a separate absolute memory address that will generally contain a
jump to the actual ISR to be executed.

In other processors with interrupt vector tables, when a vectored interrupt is
processed, the CPU goes through the following sequence of events to begin
execution of the ISR:

1. After acknowledging the interrupt, the CPU receives the vector number.

2. The CPU converts the vector into a memory address in the vector table.

3. The ISR address is fetched from the vector table and placed in the
program counter.

193 CHAPTER NINE
Other Interfaces and Bus Cycles

For example, when an external event occurs, the interrupting device activates
the IRQ input to the interrupt controller that then requests an interrupt cycle
from the CPU. When the CPU acknowledges the interrupt, the interrupt con­
troller passes the vector number to the CPU. The CPU converts the vector
number to a memory address. This address points to the place in memory,
which in turn contains the address of ISR.

Non-Vectored Interrupts

For systems with non-vectored interrupts, there is only one interrupt service
routine entry point, and the ISR code must determine what caused the inter­
rupt if there are multiple interrupt sources in the system. When an interrupt
occurs a call to a fixed location is executed, and that begins execution of the
ISR. It is possible to have multiple interrupts pointing to the same ISR. The
first act of such an ISR is to determine which interrupt occurred and branch
to the appropriate handler. Serial I/O ports frequently have one vector for
transmit and receive interrupts.

A typical microcontroller serial I/O port consists of a serial-in/parallel-out shift
register for receiving serial input data, and a parallel-in/serial-out shift register
for transmitting serial data, as shown in figure 9-10.

Serial to Parallel

Shift Register

Serial
Data In CPU Data Bus

Serial
Figure 9-10: Serial to parallel Parallel to Serial Data Out
conversion interface. Shift Register

When the last bit of serial data shifts into the receive register, the receive
interrupt bit is set (the RI SFR bit in the 8051) to indicate that the receiver
buffer is full and ready to be read by the CPU. Likewise, the transmit interrupt
bit is set (the TI SFR bit in the 8051) to when transmit buffer is empty and
ready to accept more data from the CPU.

194 EMBEDDED CONTROLLER
Hardware Design

When multiple simultaneous interrupts occur, the processor must have some
way of choosing which interrupt should be processed first. There are two
common techniques for resolving the priority of simultaneous interrupts:
serial and parallel.

Serial Interrupt Prioritization

When an interrupt occurs, the interrupting device lowers IEO and waits until
IEI is high. Each device below it in line lowers its IEO. The device then per­
forms an interrupt cycle. When the ISR is complete an end of interrupt occurs,
the interrupting device raises its IEO line, which propagates down the line.
This is usually referred to as a daisy chain interrupt priority system. At any
given time, the highest priority device in the chain will be serviced first.
Figure 9-11 illustrates this process.

Highest Lowest

Logic
One IE

I
IE

O

IE
I

IE
O

IE
I

IE
O

IE
I

IE
O

IEI = Interrupt Enable Input
IEO = Interrupt Enable Output

Figure 9-11: Serial “daisy chain” interrupt prioritization.

Parallel Interrupt Prioritization

A parallel priority encoder can also be used to prioritize multiple simulta­
neous interrupt requests. The priority encoder encodes the highest priority
active input as a binary value, and that value is used as part of the interrupt
vector number. The interrupts could be prioritized using an encoder that is
equivalent to a 74x148 style 8:3 line priority encoder.

In most machines, the CPU checks for interrupt requests just after execution
of each instruction. When an interrupt is enabled and occurs, the CPU will:

1. Save the PC (program counter) on the stack.

2. Acknowledge the interrupt request and get the vector from interrupt source.

195 CHAPTER NINE
Other Interfaces and Bus Cycles

3.	 Use the vector as an address or as a pointer into the interrupt vector table
to fetch the address of the ISR from the vector table.

4.	 Load the address of ISR into the program counter.

5.	 CPU executes the ISR until return from interrupt execution at end of ISR.

6.	 Pop address off stack into program counter.

7.	 Continue execution where interrupt occurred.

The purpose of the interrupt processing sequence is to allow the processor to
temporarily stop an executing program when an external event occurs, call
the appropriate interrupt service routine to process the event, and then return
to the interrupted program where it left off.

Interrupts provide a very efficient means for the processing of events that
occur at unpredictable times with a minimum of delay. This is particularly
important when there are a number of things that the processor must handle
concurrently. Whole operating systems, usually referred to as real-time operating
systems (RTOS), are designed to allow an application programmer to design
multiple programs that can run concurrently on a single CPU almost as if they
were running on separate processors.

197 CHAPTER TEN10

Other Useful Stuff

This chapter surveys practical design issues that must be considered in an
embedded design. Some of these topics are covered in more detail by the
references in Appendix B.

Construction Methods

Embedded controllers can be constructed using any one of several techniques,
but the most common method is a printed circuit board (PCB). The PCB is
constructed of insulating material, such as epoxy impregnated glass cloth,
laminated with a thin sheet of copper. Multiple layers of copper and insulating
material can be laminated into a multi-layer PCB. By drilling and plating holes
in the material, it is possible to interconnect the layers and provide mounting
locations for through-hole components.

In designing the layout, or interconnecting pattern of the PCB, there are many
conflicting requirements that must be addressed to make a reliable, cost-
effective and producible device. For low speed circuits, the parasitic effects
can be ignored and are often assumed to be ideal connections. Unfortunately,
real circuits are not ideal, and the wires and insulating material have an effect
on the circuit, especially for signals with fast signal rise/fall times. The traces,
or wires, on the PCB have stray resistance, capacitance, and inductance. At
high speeds, these stray effects delay and distort the signals. Special care must
be taken when designing a PC board to avoid problems with transmission line
effects, noise, and unwanted electromagnetic emissions.

198 EMBEDDED CONTROLLER
Hardware Design

Power and Ground Planes

When possible, it is a good idea to use two layers of a four or more layer
PCB dedicated to the Vcc and ground signals. These are referred to as power
and ground planes. One advantage is that there is a beneficial high frequency
parasitic power supply decoupling capacitance, which reduces the power
supply noise to the ICs. Power planes also reduce the undesirable emission of
electromagnetic radiation that can cause interference, and reduce the circuit’s
susceptibility to externally induced noise. The power planes tend to act as a
shield to reduce the susceptibility to external noise and radiation of noise
from the system.

Ground Problems

While the concept of an ideal circuit ground may seem relatively simple, a
great many system problems can be directly traced to ground problems in
actual applications. At the least, this can cause undesirable noise or erroneous
operation; at the worst, it can result in safety problems, including possibly
even death by electrocution. Lest you dismiss the importance of this too
quickly, the author has narrowly missed electrocution while testing a device
in which the grounding was improperly implemented!

These problems are most often caused by one of the following problems:

•	 Excessive inductance or resistance in the ground circuit, resulting in
“ground loops.”

•	 Lack of, or insufficient isolation between, the different grounds in a system:
earth, safety, digital and analog grounds.

•	 Non-ideal grounding paths, resulting in the currents flowing in one circuit
inducing a voltage in another circuit.

The solutions to these problems vary, depending upon the type of problem,
and the frequency range in which they occur. Usually they can be simplified
to reducing the currents flowing in common impedances of circuits which
need to remain isolated using a single point ground, and the prudent applica­
tion of shields and insulation to prevent unwanted parasitic signal coupling.

199 CHAPTER TEN
Other Useful Stuff

Electromagnetic Compatibility

Electromagnetic compatibility (EMC) issues have become much more significant
now that there are a large number of electronic devices which unintentionally
radiate electromagnetic energy in the same frequency ranges used for commu­
nication, navigation, and instrumentation. Regulatory agencies—such as the
Federal Communications Commission (FCC) in the United States, the Depart­
ment of Communications (DOC) in Canada, and similar organizations in
Europe—have defined limits to the amount of energy such electronic devices
are allowed to emit at various frequencies. Even more stringent requirements
are placed on life critical equipment, such as aircraft navigation and life support
equipment, because of the sensitive nature of the applications. Among other
things, these devices are required to provide a minimum level of immunity to
externally induced noise (radiated and conducted susceptibility).

In solving an EMC problem, the first step is to identify the source of the noise,
the path to the problem area, and the destination where the problem manifests
itself. Once these three characteristics of an EMC problem are identified, the
engineer can evaluate the relative merits of eliminating the noise at its source,
breaking the path using shielding and similar techniques, and reducing the
sensitivity of the affected circuit. There are several useful resources, including
publications, seminars, test labs, and consultants who specialize in solving
EMC problems. The best solution is usually to begin testing a new design at
the earliest possible point in the prototype phase to determine where the
potential problem areas are so they can be addressed with the least cost and
schedule impact.

Electrostatic Discharge Effects

Electrostatic discharge (ESD) is an important design consideration in embedded
applications because of the potential for failure and erroneous operation in the
presence of external electric fields. ESD voltages are commonly impressed on
embedded interfaces—on the order of tens of thousands of volts—when some­
one walks across a floor in a low humidity environment before touching an
electronic device. One of the most common places where this becomes an issue
is in the keyboard or user input device, which comes in direct contact with the

200 EMBEDDED CONTROLLER
Hardware Design

outside world. This effect can cause immediate damage or upset, or may cause
latent failures that show up months after the ESD event. Designers most often use
shielding and grounding techniques similar to those used for safety and emission
reduction techniques to minimize the effects of ESD. The same resources which
are available for EMC problems are also generally of use for ESD problems.

Fault Tolerance
Increasingly, fault tolerance has become a requirement in embedded systems as
they find their way into applications where failure is simply unacceptable. Many
hardware and software solutions have been developed to address this need.

In order to understand how to deal with these faults, we must first identify
and understand the types and nature of each type of fault. Every fault can be
categorized as a “hard” or “soft” fault. Hard faults cause an error that does not
go away—for example, pushing reset or powering down does not result in
recovery from the fault condition. Soft faults are due to transient events or, in
some cases, program errors.

Self-test and diagnostic programs may be able to identify and diagnose the
failure if it is not too severe. Depending upon what type of fault occurs and
which device(s) are affected, it may be possible to design a system to detect
the fault, possibly even isolating the location of the fault to some degree. In
the event of a soft failure, it may be possible for the designer to make the
system recover from the fault automatically.

A built in self test program can be written for an embedded processor that will
be able to detect faults in the following types of devices:

• Processor (if the fault is not too severe)

• Memory

• ROM

• RAM

• E/EEPROM

• Peripheral devices

Note that it is difficult, if not impossible, to detect faults in the control circuits
or “glue logic” in a system. Other devices, such as memories, lend themselves
to diagnostic methods.

201 CHAPTER TEN
Other Useful Stuff

The data contents of ROM devices can be tested for errors using one or more
of the following techniques:

• Parity

• Checksum

• Cyclic redundancy check (CRC)

RAM memories and the integrity of information stored in RAM by the proces­
sor can be tested for proper operation using one of the following techniques:

• Hardware error detection and correction

• Data/address pattern tests

• Data structure integrity by checking stack limits and address range validity

Additionally, the integrity of the program and proper execution sequence
by the CPU can be checked using one or more of the following techniques:

• Hardware parity error detection

• Duplicate, redundant hardware and cross checking or voting

• “Watch dog” timer that operates the CPU chip’s reset line

• Diagnostics that run constantly, when the CPU has nothing else to do

Hardware Development Tools

There are two general classes of hardware development tools available to the
embedded developer: passive analysis tools which allow looking at the opera­
tion of the system, and active tools which allow the designer to intrude on
the operation of the system while it’s running (even making changes to the
system’s configuration and software while it is under test). The system under
test is usually referred to as the “target” system, and the computer that is used
to develop, edit, compile, assemble, and download the code to the target
system is called the “host” system.

Passive tools include:

• logic probes to look at static logic levels and detect pulses

• oscilloscopes to look at signal waveforms

• logic analyzers, with processor specific probes

• software to assist hardware development, scope loops

202 EMBEDDED CONTROLLER
Hardware Design

Active tools include:

•	 In-circuit emulators (ICE) for HW/SW integration are plugged into the
application circuit (the “target” system) in place of the CPU, allowing
the designer to “see inside” the microcontroller, download, and execute
programs selectively.

•	 ROM emulators (ROM ICE) allow the designer to reduce the time it takes
to edit-compile-load-debug programs by replacing the program EPROM
with a RAM that can be loaded quickly and easily from the host computer.

Instrumentation Issues

One of the most significant, but often ignored, problems designers must
address is the proper selection and use of test instrumentation. Improper
selection and application of these tools are frequently the source of much
wasted time and confusion for the designer. Two common usage problems
relate to the use of oscilloscope and logic analyzer probes.

A typical scope or logic analyzer is supplied with probes that might not be
expected to have an effect on the observed signal or distort the data gathered.
With input impedances in the megohm range and parasitic capacitances of
tens of picofarads, it might seem that the test equipment would have little or
no effect on the measurement, but this is definitely not the case.

There are two common causes for measurement problems: excessive ground
lead inductance, and excessive capacitive loading. These things cause at the
least a potential for erroneous measurements, or at worst, they can cause the
circuit under test to behave differently. Two things can be done to mitigate
these problems:

1) Use the shortest possible test leads, especially for the ground connection
on fast logic.

2) Use high impedance probes, especially designed for high speed applications,
such as high-speed FET input scope probes.

Other instrumentation problems can be caused by misinterpretation of the
sampling effects in digital scopes, the lack of glitch detection in logic analyzers,
and other obscure but potentially painful “learning experiences.” These can

203 CHAPTER TEN
Other Useful Stuff

only be avoided with a good understanding of the operation of the equipment
in use and some practical experience.

Software Development Tools

Most of the software development tools available to the embedded system
designer fall into one of the three categories: language translator, debugger,
and utility programs that generally run on the host computer. Most of the
available tools have been designed to run on the x86 architecture PC, and
many are available as freeware, shareware, or low cost commercial products
for the more common target processor architecture.

Translators:
Assembler

Compiler

Linker

Interpreter

Debugging:

Software/firmware monitors

Processor In-Circuit Emulator (ICE)

ROM ICE

Utility:

PROM Programming

Performance measurement

Execution frequency histograms

Other Specialized Design Considerations

There are several other characteristics that the embedded system designer
should become at least somewhat familiar with. These include the thermal
characteristics of a system and the concept of thermal resistance, power
dissipation, and the effects on device temperature and reliability. Another
issue of importance in portable, hand held, and remotely located systems is
the application of battery power storage.

204 EMBEDDED CONTROLLER
Hardware Design

Thermal Analysis and Design
The temperature of a semiconductor device, such as a voltage regulator or
even a CPU chip, is a critical system operating parameter. The reliability of
these devices is also closely related to temperature, so much so because the
device’s reliability drops exponentially with increasing temperature. Fortu­
nately, calculating the operating temperature of a device is not too difficult, as
there is a simple electrical circuit analogy that is most often used to compute
temperature of a device. The temperature is analogous to voltage, the power
dissipated is equivalent to current, and the thermal resistance is equivalent to
electrical resistance. In other words:

Temperature rise (°C) = power (watts) * thermal resistance (°C/watt)

The thermal resistance of multiple mechanical components stacked one upon
the other add, just as series resistors are equivalent to a single resistor equal
to the sum of the individual values.

For example: Given a 5 volt linear voltage regulator with a 9 volt input
providing 1 ampere of load current, the regulator will dissipate:

P = V*I = (9–5 volts) *1 amp or 4 watts of power.

If the regulator is specified with a thermal resistance between the semicon­
ductor junction and case of 1°C/watt (signified as Θjc), and the heat sink the
regulator is mounted to has a thermal resistance from the regulator mounting
surface to still ambient air of 10°C/watt (signified as Θca), then the total ther­
mal resistance between the semiconductor junction and ambient air is:

Θja = Θjc + Θca = 1 + 10 = 11 °C/watt

The temperature rise of the junction above that of the air surrounding the
regulator will then be given by:

T = P * Θja = 4 watts * 11 °C/watt = 44 °C above ambient.

If the regulator was specified to operate at a maximum junction temperature
of 85°C, then the device should not be operated in ambient air of temperature
higher than 85 – 44 = 41 °C, or the regulator will fail prematurely. If this is
not acceptable, then the designer must reduce the input voltage to reduce the
power dissipated, reduce the thermal resistance by forced air flow, or change
the design to another type (e.g. a switch mode regulator) so as to keep the
regulator junction within operating constraints.

205 CHAPTER TEN
Other Useful Stuff

Battery Powered System Design Considerations

The rapid increase in the use of portable, battery operated electronic devices
has spurred the development of new battery technologies for these applica­
tions. The older single-use and rechargeable battery chemistries have been
supplanted by newer ones, providing improved power densities, operating
life, and other enhancements. Unfortunately, these new energy storage devices
come with new and different characteristics and limitations when compared
to the older energy storage devices.

Batteries are generally divided into two common groups: primary (one time
discharge and discard), and secondary (rechargeable) batteries. Primary memo­
ries include the non-rechargeable alkaline and lithium cells sold commercially,
and secondary cells include the older lead-acid and nickel-cadmium (NiCd)
chemistries, as well as the newer nickel metal hydride (NiMH) and rechargeable
alkaline and lithium ion chemistry products. There is also a wide range of
special purpose batteries that are optimized for some specific characteristic,
such as the zinc-air primary cell, which uses atmospheric air as an “electrode”
to provide very high energy density at low operating current.

Primary batteries, such as alkalines and lithium coin cells, are relatively simple
to use, but are often limited to one to three years of operation. This is primarily
due to the shelf life limit imposed by internal leakage current that discharges
the battery slowly over time, especially at high temperatures.

The secondary, rechargeable battery types each have slightly differing charge-
discharge requirements and limitations which must be considered for effective
application in a battery powered system. There are special algorithms to opti­
mize the performance and service life of the batteries, and there are even chips
which are design specifically to manage the charge and discharge of common
secondary battery types.

Many embedded devices must be designed to operate for long periods of time
with very little power obtained from solar cells, batteries, and other limited
power sources. As a result, there are CMOS processors and memories which
have been designed with very low power consumption operating modes,
frequently referred to as “sleep,” “power down” or “idle” modes that consume
current in the µA range.

206 EMBEDDED CONTROLLER
Hardware Design

Processor Performance Metrics

In an effort to compare different types of computers, manufacturers have
come up with a host of metrics to quantify processor performance. These
metrics include:

The successful application of these devices in an embedded system usually
hinges on the following characteristics:

•	 IPS (instructions per second)

•	 OPS (operations per second)

•	 FLOPS (floating point OPS)

•	 Benchmarks (standardized and proprietary “sample programs”) that are
short samples indicative of processor performance in small application
programs

IPS

IPS, or the more common forms, MIPS (millions of IPS) and BIPS (billions of
IPS) are commonly thrown about, but are essentially worthless marketing hype
because they only describe the rate at which the fastest instruction executes
on a machine. Often that instruction is the NOP instruction, so 500 MIPS
may mean that the processor can do nothing 500 million times per second!

OPS

In response to the weakness in the IPS measurement, OPS (as well as MOPS
and BOPS, which sound fun at least) are instruction execution times based on a
mix of different instructions. The intent is to use a standard execution frequency
weighted instruction mix that more accurately represents the “nominal” instruc­
tion execution time. FLOPS (megaFLOPS, gigaFLOPS, etc.) are similar, except
that they weight floating-point instructions heavily to represent heavy compu­
tational applications, such as continuous simulations and finite element analysis.
The problem with the OPS metric is that the resulting number is heavily
dependent upon the instruction mix that is used to compute it, which may not
accurately represent the intended application instruction execution frequency.

207 CHAPTER TEN
Other Useful Stuff

Benchmarks

Benchmarks are short, self-contained programs which perform a critical part
of an application—such as a sorting algorithm—that are used to compare
functionally equivalent code on different machine. The programs are run for
some number of iterations, and the time is measured and compared with that
of other CPUs. The weakness here is that the benchmark is not only a measure
of the processor, but also of the programmer and the tools used to implement
the program. As a result, the best benchmark is the one you write yourself,
since it allows you to discover how efficiently the code you write will execute
on a given processor with the tools available. That’s as close to the real appli­
cation performance as you’re likely to get, short of fully implementing the
application on each processor under evaluation.

Device Selection Process

In selecting a device from a field of several devices, there is more to be consid­

ered than just the speed of the processor. Some factors, such as the availability

of secondary suppliers may be an absolute requirement in some applications.

In order to make a systematic evaluation and selection of the best alternative,

the following method has proved to be valuable, particularly when the selec­

tion process must be documented and justified. The process consists of three

major steps: eliminating the alternatives that are completely inappropriate,

ranking the remaining options, and evaluating the adverse consequences of a

catastrophic event.

The three decision matrices are:

1) Pass/fail criteria for elimination of non-conforming alternative.

2) Weighted scoring of parametric values to rank options.

3) Consideration of adverse consequences, including their probability

and severity

The first matrix consists of a table with all the options on one axis and all the
“must have” criteria on the other axis. Each criterion is checked off for each
option. The second matrix consists of the surviving options from the first
matrix on one axis of a table, and a list of quantitative measures on the other

208 EMBEDDED CONTROLLER
Hardware Design

axis, along with a weighting factor for each measure, indicating its relative
importance. Each option receives a weighted score allowing them to be ranked.
Finally, each of the top ranking options is evaluated with respect to probability
of occurrence. For instance, a dual source part that both manufacturers produce
in the Silicon Valley could become totally unavailable from either source in the
event of a major earthquake in that region. In that case, even though the prob­
ability of occurrence is very low, the consequences are very severe; production
could be interrupted for a very long time from both sources simultaneously,
causing the product they’re designed into to stop shipping for an indefinite
period of time.

209 CHAPTER ELEVEN11

Other Interfaces

Many of the more advanced microcontrollers come with extensive enhancements
to simplify their interface with real-world devices. There are a large number of
sensors and actuators that can be interfaced to a microcontroller. Common
sensors indicate parameters which include temperature, pressure, position,
speed, flow rate, strain, torque, volume, density, magnetic compass heading,
light level, concentrations of gases, and many more. Because of the application
of semiconductor fabrication technology to many of these sensors, the cost,
complexity, and accuracy have improved significantly. There are also several
low cost output devices and actuators available for use with microcontrollers,
including LEDs, LCDs, radio control servos, “muscle wire” that changes length
when a current runs through it, and piezoelectric transducers, among others.

In many cases, these sensors and transducers inputs and outputs can be pro­
cessed using simple I/O devices commonly available on most microcontrollers.

•	 Non-contact proximity sensors are available which put out a frequency or
phase signal that is proportional to position. A simple counter can be used
to measure the frequency or timing of the signals from such devices.

•	 A three-pin IC is available which contains all the circuitry necessary to
convert the temperature into a serial digital value that can be read by a
micro (Dallas DS1620).

•	 A simple magnetic compass provides heading information in serial digital
format, or as an output voltage proportional to heading.

There are also many different options for connecting and communicating
with these devices, including IR (infra-red light), radio, AC carrier current,
and several variations on traditional wired connections.

210 EMBEDDED CONTROLLER
Hardware Design

Analog Signal Conversion

Many types of embedded computer applications must deal with information
that is not inherently digital by nature. Real world signals, such as temperature
and pressure, are inherently analog signals. Analog signals are continuously
variable in amplitude and must be converted to discrete digital approximations
for use in digital processors. Real analog values can only be approximated with
a discrete digital value. As noted in previous chapters, devices that convert
from the continuously variable form to the discrete form of representation are
called analog to digital converters (ADC or A/D). Similarly, there are devices
that convert from digital to analog form, called digital to analog converters
(DAC or D/A). Since analog values may vary continuously over time, it is also
necessary to sample these varying values to allow conversion to a single value.
Sampling is like taking a “snapshot” of a changing value at one point in time,
similar to the way a moving object is frozen at one point in time by a strobe
light. An analog device, known as a sample and hold (S/H or SAH) is used to
take the snapshot using a switch and a capacitor to sample and store an analog
value. After an analog signal is sampled, it can be converted to digital form by
an A/D converter. The digital approximation of the sampled analog value can
then be used by the processor and later converted back to an analog value by
a DAC, if required. This is the general approach used to record and playback
speech in a digital answering machine (this will be discussed later in this chapter).

Some microcontrollers include A/D converter hardware, with as many as eight
analog inputs. Most devices do not have an internal DAC, but some have a
pulse width modulated (PWM) digital output instead, which can be used in
place of a conventional DAC. The PWM waveform is most often generated by
operating one or more of the microcontroller’s timer/counters in a special
PWM count mode. The PWM output has a rectangular wave output with a
duty cycle that can be programmed between 0 and 100%. By averaging or
integrating the PWM output with a filter, it is possible to get an analog value
from this inherently digital counter output. In some cases the averaging is
part of the output device’s inherent characteristics. One example is an electric
motor that will respond to the average value of the voltage applied to it. The
rotational inertia of the motor provides the averaging of the variable duty
cycle digital waveform applied to it. A resistive heating element also responds
to the average level applied to it due to a relatively slow thermal time constant.

211 CHAPTER ELEVEN
Other Interfaces

Another common form of conversion, used for digital signals, is logic level
conversion. This is required for serial I/O devices conforming to the RS-232
standard, which uses logic voltages in the -12 to +12 volt range rather than
the lower voltages that are standard on digital processors and logic. There are
special level translation ICs which have voltage multipliers and negative voltage
generators as well as level converters on a single IC. These devices take a +5
volt supply, convert it to + and -12 volts, and translate to and from standard
logic levels. Logic level conversion is also required when interfacing two
incompatible logic families, such as TTL and ECL.

Special Proprietary Synchronous Serial Interfaces

Many embedded systems require the use of a few specialized I/O devices, and
the limited pin count of a microcontroller chip can make it difficult to interface
all the desired I/O. In order to allow I/O expansion without using many of the
pins on a microcontroller, several manufacturers have adopted a serial bus
mechanism. Some of the devices are unique and proprietary, but there are two
that are standardized:

• Philips’ serial bus, trademarked as I2C (for Inter-Integrated Circuit bus)

• National’s serial bus, trademarked as MicroWire

The I2C bus is much more flexible because it allows many devices to coexist
on the bus. It is also more complex, as it allows for a large number of device
addresses and multiple masters. The MicroWire bus is relatively simple, but
requires additional I/O pins for multiple devices.

Unconventional Use of DRAM for Low Cost
Data Storage

In some applications, static RAM (SRAM) is too expensive for data storage. A
low cost alternative is to use dynamic RAM (DRAM) and handle the address
multiplexing and refresh under software control. On a cost-per-bit basis,
DRAM is significantly less expensive than SRAM. If the cost of address multi­
plexing and refresh hardware is added to the DRAM cost, it is not cost effective

212 EMBEDDED CONTROLLER
Hardware Design

for small memories. In general, interfacing a DRAM directly to a microcon­
troller under software control is the best way to get extremely low cost-per-bit
storage. It’s used for applications like voice storage in low cost digital answering
machines. It works well, and there are a lot of tricks you can use, such as
refreshing all the rows in one burst. The disadvantage is that a significant
amount of processor time has to be used to refresh the memory. In addition,
each read or write access has the overhead of multiplexing the address bits
and strobing the /RAS and /CAS lines under program control.

In some cases the entire memory is not needed, so it is possible to reduce the
number of I/O pins used to interface to the address lines. This would seem to
be wasteful, but the price of memory chips must be considered. For current
chip designs, larger memories cost more than smaller ones. Once DRAM parts
become obsolete, the prices for small, obsolete parts actually become greater
than larger memories because the smaller chips are no longer produced in
volume. It is possible to use a portion of a larger memory chip by connecting
some of the address lines in parallel and ignoring the additional memory. The
reason you can’t just fix some of the address lines high or low is that some
devices require a changing level on the address lines for internal circuitry that
pre-charges the select lines in the array. The locations you can’t access won’t
be refreshed, but that won’t matter since they’re not used.

Modern DRAMs have automatic refresh circuits which perform a refresh cycle
using /CAS before /RAS refresh cycles, and even include internal refresh address
counters. As an example, a 1Mx4 DRAM part provides 512 kilobytes of data
four bits at a time. It can be fully refreshed by pulsing /CAS then /RAS low once
for every row in the memory array. Having access to four bits at a time reduces
the address multiplexing I/O overhead compared to using a 4Mx1 DRAM.

Digital Signal Processing / Digital Audio Recording

A common use for DRAM is in low cost digital voice recording, such as that
used in some digital answering machines and toys. A microcontroller could
be used in conjunction with a DRAM to record and play back voice. Standard
telephone digital voice circuits sample at a rate of 8000 samples per second
companded at eight bits per sample, which is 8 kilobytes/second, or 64 kilobits/
second. Telephone circuits have a theoretical 4 kilohertz Nyquist bandwidth

213 CHAPTER ELEVEN
Other Interfaces

limit, but a 3 kilohertz practical audio bandwidth due to filter design constraints,
which is consistent with the bandwidth of an analog phone system. At 8000
samples per second, it would only be possible to store four seconds of audio
in a 32 kilobyte SRAM. Using a 1Mx4 part would allow 512/8 = 64 seconds of
speech in one DRAM chip.

Standard telephone CODEC (COder/DECoder) ICs have special logarithmic
analog to digital and digital to analog converters as well as low pass anti-aliasing
and smoothing filters built in. They’re used in huge quantity in digital telephone
equipment. CODECs have serial I/O, but at 64,000 samples per second they’re
probably too fast for devices such as a programmable interface controller (PIC).
It is also possible to reduce the sample rate if a reduced bandwidth is acceptable.

A four chip system consisting of a microcontroller, a DRAM IC, a CODEC IC,
and an audio amplifier IC could be used to store and play back speech at a
cost of a few dollars. The length of the recording can be increased using data
compression techniques. Special compression algorithms reduce the redundancy
inherent in most audio signals, such as voice. There are some very efficient
coding schemes such as linear predictive coding (LPC) that have the ability to
store compressed speech at rates as low as a few thousand bits per second.
They actually model the human vocal tract. The trade off is that the compu­
tational load for compression and decompression are fairly large to get high
compression ratios. It’s fairly simple to playback and is useful for pre-recorded
speech. That’s what is used in many talking toys like Texas Instruments’
“Speak and Spell.” TI developed the LPC algorithm, and was first to sell it in
consumer products.

Simpler compression schemes, like adaptive differential pulse code modulation
(ADPCM), can give as much as 4:1 compression ratios without much compu­
tation. A compression ratio of 4:1 would result in 2 kilobytes per second of
compressed speech. ADPCM encodes differences between samples instead of
the raw values. Some applications don’t require high quality audio, so there
are quite a few corners that can be cut. For example, it’s possible to reproduce
intelligible speech using samples of less than eight bits. Four bits is probably
enough for some voice storage applications. It is even possible to reproduce
intelligible speech on the one bit digital output of the PC’s speaker! At the
other extreme, some signals, such as music, require higher sample rates and
more bits per sample. Compact audio discs (standard CDs), for example, use

214 EMBEDDED CONTROLLER
Hardware Design

44,100 samples per second at 16 bits per channel per sample to store very
high quality audio. This results in 44,100 samples/second * 16 bits/sample/
channel * 2 channels = 1,411,200 bits per second of stereo audio. (Actual data
rates are slightly higher, in order to accommodate synchronization and other
overhead.)

215 APPENDIX AA

Hardware
Design Checklist

A complete and reliable design requires all of the innumerable details to be
evaluated and analyzed correctly. The following checklist is intended to provide
a guide for the designer to ensure that all the important design aspects have
been evaluated. This up-front effort is a significant effort, but is less expensive
and time consuming than searching for the errors once a design has been
committed to production.

Schematics are an essential part of any hardware design review. To facilitate
the review, here are a few general guidelines that should be followed during
preparation of the schematics for a project:

•	 Multi-page schematics should be structured hierarchically.

•	 A top level sheet should be created showing the interconnects between
other sheets.

•	 In each drawing, all inputs should on the left side and a;;outputs on the
right side of the page.

Detailed Checklist
This checklist can be used as the basis of a technical design review, or in
evaluating the correctness of hardware designs produced by others.

List all integrated circuits used in the design, along with the required supply
voltage and percentage tolerance or range of voltages, and the actual power
supply voltage range that will be encountered by these devices. Some CAD
systems will assist with this process, but they may be more trouble to use than
the effort warrants. Most of these analyses can be documented and calculated
using a simple spreadsheet.

216 EMBEDDED CONTROLLER
Hardware Design

1. Define Power Supply Requirements

All power supply voltages and tolerances should be listed, along with the
typical and maximum current requirements over the temperature range for
each device. A crtitical and highly reliable design should leave significant
margin (50 to 100% excess capacity) between required load and maximum
available supply current, reducing the stress on the power supply. This is
particularly important, since heavy loading on a power supply increases the
temperature of the power handling components, significantly reducing the
long term reliability of the power supply. Power supplies are among the
devices in a system which are the most likely to fail, and often take other
components with them when they do.

Example:

IC# Type Supply Voltage, %Tol., curr Alternate Voltage(s)

U1 80C552 CPU Vdd = 5 V, +/-10%, 100 mA

U2 D/A Converter Vcc = 4.5-5.5 V, 50 mA

Vref 2.5 V +/-1%, 10 mA

-5 V 5%, +12V 10% 100 mA

From this data, the power supply requirements would be:

•	 Vdd = Vcc = 5 volts +/-5% 150 milliamperes minimum plus 100 milliam­
peres margin becomes 5 volts 5% at 250 milliamperes.

•	 Vref =2.5 V +/-1% 10 milliamperes minimum derived from +5 V supply
using a 5 V reference IC.

• –5 V 5% 100 milliamperes minimum plus 50 milliamperes margin becomes
–5V 5% at 150 milliamperes.

•	 +12V 10% 100 milliamperes minimum plus 50 millamperes margin
becomes +12V 10% at 150 milliamperes.

Verify that the voltages delivered to all the devices are within their specifica­
tions, and that the sum of the worst case currents used by the devices can be
supplied by the power source with some margin.

When a prototype circuit is available, measure actual power consumption to
verify that it is within expected limits. The current consumption of subse­
quent units can be compared to a known good device.

217 APPENDIX A
Hardware Design Checklist

2. Verify Voltage Level Compatibility

The voltage levels that will occur at the interface to each type of chip that is
in the design must be compatible. This must be evaluated for two purposes:
so that the correct output logic level is interpreted by the driven input, and to
avoid potential damage to device inputs. The ability of the device to tolerate
input voltages without damage is usually defined as an absolute maximum
rating and the normal operating logic levels are defined in a section that is
usually called DC characteristics. An example of the maximum levels is the
Vih maximum spec, which defines the maximum input voltage that an input
can withstand without potentially damaging the device’s input. A 3 volt gate
might have Vcc+0.3 volt maximum input specification, and driving it with the
output of a 5 volt logic gate can damage the 3V gate input.

A key element of voltage level compatibility is noise margin analysis. Look at
the Voh-Vih and Vil-Vol logic levels on all parts that interconnect to determine
if sufficient noise margins are available. The hard part is determining just
what an acceptable noise margin is for a given device. Several issues must be
considered, including the anticipated noise environment and the required
reliability level. Clearly it would be prudent to insure a high level of noise
immunity designing with large noise margins for a cardiac pacemaker design!
A hand-held game would not warrant the same level of reliability and result­
ing expense. If there is TTL compatible logic in a system, it probably doesn’t
make sense to design for a noise margin in excess of the inherent 400 milli­
volts level inherent in the TTL specs. When evaluating the noise margin of
devices such as a microcontroller and an memory, it’s fairly common to find
that the memory’s specs result in a noise margin of 200 millivolts or less, as
shown in the example below:

Noise Margin Analysis - Example
OUTPUT INPUT Noise Margin

logic logic
zero one

Vol
Signal Pin(s) Source max

Voh
min Load(s) Signal

Vil
max

Vih
min

CS 29 8051 0.40 2.00 EPROM OE/ 0.80 2.30 0.40 0.30

RD/ 17 8051 0.40

0.40

2.00

2.00

SRAM OE/

82C55 RD/

0.80

0.80

2.20

2.00

0.40 -0.20
0.40 0.00

218 EMBEDDED CONTROLLER
Hardware Design

Since many systems employ logic using different power supply voltages,
such as mixed 5 and 3.3 volt logic, it is important to verify that the signals
that cross the boundary have sufficient noise margins, and do not exceed the
maximum input voltage ratings. In some cases, level conversion or voltage
clamping circuits may be necessary. Some 3 volt logic devices are tolerant of
5 volt signal levels on some of their input pins, simplifying the design. On
the other hand, 3 volt CMOS outputs can often drive 5 volt logic with TTL
compatible inputs directly.

3. Check DC Fan-Out: Output Current Drive vs. Loading

Maximum logic output currents (IOL and IOH) are specified, usually at a specific
output voltage (VOL and VOH respectively) . The total load current that an output
drives must be compared to the inputs and any resistors the output must
drive, and sufficient margin must be allowed to guarantee proper operation.

Some logic outputs, such as IRQ and DMA request lines, frequently use open-
drain or open-collector buses, which require pull-up resistors. Open-drain or
open-collector outputs must be identified and pulled up with an appropriate
resistor. Unused inputs should be pulled to their inactive state: either pulled
up to the supply through a resistor, or connected to ground, as appropriate.

Pull-up resistor values must be chosen to minimize the rise time using as
small a value as will satisfy the maximum I

OL
 of the weakest open-drain device

driving the line.

4. AC (Capacitive) Output Drive vs. Capacitive Load
and De-rating

Device timing is usually specified under specific loading conditions on the
outputs. If the actual capacitive load on the outputs, consisting of the driven
logic inputs and stray wiring capacitance, exceeds the load capacitor specified
in the output device’s timing test conditions, then the timing specs will not
be valid. If the amount of overload is not severe, it is possible to estimate the
additional delay required to charge the excess capacitance. The delay depends
upon the available charging current and actual load capacitance.

219 APPENDIX A
Hardware Design Checklist

DC and AC loading can be summarized in a spreadsheet as shown below:

Source

uA uA pF

Load Unit Load

uA uA pF

Total

uA uA pF

Signal Pin# Source IOL IOH CL Load Signal Qty IIL IIH Cin IIL IIH Cin

AD0..7 39-2 8051 3200 -800 100 74LS373 A0..7 1 -400 20 10 -400 20 10
(P0.0-P0.7) SRAM

EPROM
D0..7
D0..7

1
1

-1 1 7
-1 1 12

-1 1 7
-1 1 12

82C55 D0..7 1 -10 10 20 -10 10 20
wire cap 5 2

Total
10

-412 32 59

SRAM 1600 -600 50 74LS373 A0..7 1
Margin

-400 20 10
2788 768 41
-400 20 10

8051 D0..7 1 -1 1 20 -1 1 20
EPROM D0..7 1 -1 1 12 -1 1 12
82C55 D0..7 1 -10 10 20 -10 10 20

wire cap 5 2
Total

10
-412 32 72

Margin 1188 568 -22

5. Verify Worst Case Timing Conditions

All timing specifications should be evaluated for potential timing violations,
as covered in chapter 6. This is particularly important for signals that are
heavily loaded requiring de-rating of the timing specs, or tri-state signals that
are subject to bus contention problems.

6. Determine if Transmission Line Termination is Required

The signal rise time and maximum trace length must be evaluated to deter­
mine if a signal interconnect must be treated as a transmission line, requiring
constant impedance along the length of the trace, and termination to prevent
reflections. If the signal has a fast rise time and trace length, L, greater than
about one-sixth the edge length of the pulse, then it is necessary to analyze
the circuit as a transmission line using this formula:

L = T / D where
r

L = length of rising or falling edge in inches (in)
T = rise time in picoseconds (pS)r

D = delay in picoseconds per inch (pS/in)

220 EMBEDDED CONTROLLER
Hardware Design

For traces on a standard printed circuit board, the value for D will be in the
range of 100 to 200 pS/in. Depending upon how much distortion you’re willing
to live with, the critical trace length will be between one-sixth and one-quarter
of the length of a trace corresponding to the signal’s transition. For a trace that
is shorter than one-sixth the length of the signal’s rising or falling edge, the
circuit seldom needs to be considered to be a transmission line. Traces that are
much longer than one-quarter the length of the fastest edge will start to behave
as transmission lines, exhibiting reflections of the signal when the transition
gets to the far end of the trace and is reflected back to the near end. Once the
trace is about half of the length it takes for a logic transition to propagate, the
problems become quite pronounced.

7. Clock Distribution

Distribution of clock signals must be done in a way that compromises the
need to minimize clock skew, while avoiding reflections that can cause unac­
ceptable clock transitions due to transmission line effects. Distributing clocks
in such a way as to avoid excessive skew implies the use of a clock tree to
provide equal time delay to each load. However, a tree topology is in direct
conflict with the need to maintain a single, stubless transmission line. The ideal
transmission line is essentially “daisy-chained” with a trace that has constant
impedance across its length and has no stubs, but that usually results in maxi­
mum timing skew! Clock signals should also be isolated from other signals to
prevent crosstalk between the clock and other signals. Clock signals should
generally NOT be gated, to avoid undesirable side effects.

8. Power and Ground Distribution

Ground and power planes are recommended on printed circuits wherever
possible, because they allow low impedance connections and provide high
frequency decoupling from inter-plane capacitance. Ground connections
should be as short as possible, especially for ground pins on multiple output
logic devices, to prevent ground bounce.

221 APPENDIX A
Hardware Design Checklist

Capacitors for Bypassing Power Supply Noise

The power and ground pins of every IC should be bypassed using a capacitor
with low impedance at the frequencies of interest (determined by rise time, not
clock rate). The self-resonance of larger capacitors, such as 0.1 microfarad, may
result in little effect on the fast current transients present in high-speed logic
chips. 0.01 or 0.001microfarad (or even hundreds of picofarads) low inductance
capacitors, are more appropriate for fast logic devices having sub-5 nanon­
second rise times. Multi-layer ceramic dielectric surface mount capacitors
work better than leaded, tantalum or electrolytic capacitors at high frequencies.
Each board in a system should also have a larger tantalum or electrolytic
capacitor to provide medium frequency bypassing for peak currents.

When possible, power supply and ground connections should be made
independently to the power supply, to minimize common impedances, also
known as ground loops. This is especially important for circuits containing
mixed analog and digital circuitry.

Mixed Analog and Digital Circuitry

The analog power supply should be separately regulated from the digital
supply, to provide a quiet power source to the analog circuitry. Separate power
and ground planes should be maintained to minimize coupling between noisy
digital circuits and sensitive analog or RF (radio frequency) circuits. Analog
power planes should not overlap with digital planes, as the digital noise will
couple through the inter-plane capacitance. Digital and analog grounds
should only be interconnected at one point, usually very near the analog-
digital conversion IC.

High impedance analog signals should be physically and electrically isolated
from digital signals to minimize digital noise on the analog signals.

Digital inputs that are driven by analog circuitry should be clamped, using a
series resistor and low forward voltage Schottky diodes, to power and ground
to clamp the signals to levels that are within the logic input specification levels.

222 EMBEDDED CONTROLLER
Hardware Design

Safety

High voltage conductors should be physically and electrically isolated from
low level and user accessible signals to avoid potential shock hazards. All
conductors should be sized large enough to allow carrying maximum current,
under short circuit conditions, and protective devices, such as fuses and
PTC switches, should be used to prevent. Conductors carrying more than
40 volts and telephone line conductors must be isolated by at least one-
quarter inch from other conductors or transformer isolated for safety agency
and telecom approvals.

9. Asynchronous Inputs

Asynchronous inputs should be synchronized using two levels of flip-flops
to minimize the probability of a metastable state when asynchronous inputs
are sampled. This is particularly important for programmable logic devices,
which may have slow recovery times from metastable states.

10. Guarantee Power-On Reset State

Verify that any devices, such as CPU, PLDs, and registers, are reset to a known
state when power is applied, or whenever power falls below normal operating
levels (brown out condition). All CPUs, counters, registers, shift registers and
memory devices are subject to unpredictable behavior when the power is out
of spec and must be reset after the power returns to specified levels.

11. Programmable Logic Devices

Verify that all flip-flops in the device will be in a known state upon power-up,
and that any counters and state machines with unused states will transition to
a valid state in the event that they get into an invalid state.

Leave a few available input and output pins available to facilitate changes in
the event that additional logic functions become necessary.

223 APPENDIX A
Hardware Design Checklist

12. Deactivate Interrupt and Other Requests on Power-Up

Interrupt, DMA, and other edge sensitive input requests should be disabled
upon power up to minimize the chance that a spurious event will be pro­
cessed when the system is turned on.

13. Electromagnetic Compatibility Issues

Signals that enter and leave the printed circuit boards should be filtered to
reduce the unintentional emission of radio frequencies as much as possible.
Digital circuits should also be packaged in conductive enclosures when pos­
sible to minimize the digital signals from being radiated as electromagnetic
interference to other devices, and to protect the device from external electro­
magnetic fields and static discharge.

High order harmonics from clock edges can be mitigated by the use of ferrite
beads (small value inductors) that reduce the amplitude of the higher clock
harmonics. Clocks should also be kept away from I/O signals and connectors
to reduce the coupling of clock noise to wires and interconnects that can act
as antennas, conducting and radiating clock harmonics as radio interference.

14. Manufacturing and Test Issues

Manufacturing of boards can be made simpler if the design implements a method
that allows programming processors, memories, and PLDs while the components
are mounted to the card. This facilitates manufacturing the boards prior to pro­
gramming the devices. This also facilitates loading test programs into the board
to allow more effective tests to determine of the board is operating as intended.

Signals which control or enable outputs or programming signals that might
need to be disabled and driven externally for test purposes should be isolated
from a test point with a series resistor, allowing an external test or programming
circuit to drive the signal without damaging the output device on the board.

The inclusion of easily probed test points also makes it easier to diagnose
failures by making it easier to probe critical signals on the board.

225 APPENDIX BB

References, Web Links,
and Other Sources

Since he number of information sources that may be of interest is too great
to include a comprehensive list—and many links to the information become
obsolete—the sources noted in this chapter are just the starting points for
more detailed information. Some of the books listed here relate directly to
this subject, and others are some of my personal favorites, as they contain
information which I make reference to regularly.

An important thing to keep in mind for any source of information is who the
source is and how they derive their income. Trade magazines are useful, and
because they are free to qualified subscribers, they are very popular source of
information. Unfortunately, they derive their income solely from their adver­
tisers, and most of the articles are written by advertisers and the magazine
editors. As a result, they often portray a very biased view of what’s going on in
the industry. Likewise, web sites and other advertiser supported information
sources often have very slanted versions of reality. There are a few exceptions,
such as magazines that are supported by subscriptions as well as advertising,
that have articles written by those of us who are down in the trenches. They
often provide a more accurate, though still biased, view of what’s really going on.

Books
The Art of Electronics, by Horowitz and Hill, also the accompanying Student
Manual, by Hayes and Horowitz, to accompany the text. This is an all-time
favorite tome that covers an incredibly wide range of topics in a very readable
and useful way. The student guide provides a refreshing review of the practical
side of electronics, and will be invaluable for those who need to learn more
about electronics.

226 EMBEDDED CONTROLLER
Hardware Design

The Circuit Designer’s Companion, by Tim Williams is a good reference for
understanding the differences between ideal circuits you learn about in
school, and the things that happen in the real world. Includes a lot of material
on undesirable component behaviors that the manufacturers frequently gloss
over if they deal with them at all.

High-Speed Digital Design, a Handbook of Black Magic, by Howard W. Johnson
and Martin Graham, which in spite of it’s subtitle, is soundly based in math
and scientific principles, and provides a clear description of what really hap­
pens in high-speed circuits. This is an excellent text to understand the design
of reliable high-speed circuits, which often exhibit non-ideal characteristics.

The Microcontroller Idea Book, by Jan Axelson uses the 8051BASIC chip to
illustrate a range of introductory embedded applications. Jan is an excellent
writer, as well as thorough and practical, so you should probably just give in
and go buy all of her books.

Serial Port Complete, by Jan Axelson covers use of the PC’s serial port and can be
very useful when interfacing an embedded controller to a PC’s serial COM port.

Parallel Port Complete, by Jan Axelson covers use of the PC’s parallel port and can
be very useful when interfacing an embedded controller to a PC’s parallel port.

Printed Circuits Handbook, by Clyde F. Coombs is the standard reference text
covering the design and manufacture of printed circuit boards.

The Cartoon Guide to Physics, by Gonick and Huffman is a great introduction
to physics and basic electronics, using humorous cartoons to illustrate basic
principles without resorting to complex math.

A Whack On The Side Of The Head, by Roger von Oech, is a humorous and
effective book describing how to learn to be innovative.

Web and FTP Sites

The sites listed below can be reached through links provided on the companion
CD-ROM, but they can quickly become obsolete, so they are also on the book
web site at www.hte.com/echdbook. In addition, the LLH Technology Publishing
web site will carry updates and corrections to this book; be sure to visit them
at www.LLH-Publishing.com.

227 APPENDIX B
References, Web Links, and Other Sources

Embedded Computer Engineering. The web site for embedded classes we teach
at UCSD extension is: www.hte.com/uconline

Embedded Computer Hardware Design. This is the class that this book was
originally created for: www.hte.com/uconline/ecd

Miller-Freeman Publishing’s Embedded Web Site. This site is hosted by the
publisher of the trade magazine “Embedded Systems Programming.” This
web site has some useful technical information, but you have to work to find
it, as it’s buried under a lot of advertising. www.embedded.com

Periodicals: Subscription

Circuit Cellar Ink, published monthly, covers embedded systems topics with
practical, design oriented articles that often include schematics and code for
working projects. This magazine leans to the practical, hands-on side of design,
including the sorts of things like single chip microcontrollers that make tradi­
tional computer scientist types sputter uncontrollably.

FORTH Dimensions. This is the bi-monthly newsletter of the Forth Interest
Group, and covers Forth, a very unique language. Forth is a very different
and yet powerful language which is very well adapted to the embedded
computing environment. This is the sort of thing that can turn a politically
correct computer scientist absolutley apoplectic. On the other hand, I’ve
never met anyone who really understood the language that didn’t like it!
Some people would characterize Forth fanatics as religious, but I’d say they’re
just sensitive because they understand the capabilities of the language and
are frustrated by the common view that Forth is not an appropriate language.
If you like a good fight, just yell “Forth” into a room full of Forth advocates
and computer scientists!

Microcomputer Journal, Midnight Engineer, and Robotics Digest, all published
whenever Bill Gates gets around to it. (No, he’s not that Bill Gates!) This
fellow is a really efficent, one-man publishing empire who does everything,
including printing and binding the magazines himself. He uses his knowl­
edge of embedded systems to help automate the publishing process. Lots
of practical information in these, though the publications probably won’t
outlive Bill.

228 EMBEDDED CONTROLLER
Hardware Design

Periodicals: Advertiser Supported Trade Magazines

EDN Magazine, an advertising supported trade publication, covers embedded
computing and general electrical engineering topics. Every September they
publish a directory of microprocessors and microcontrollers that is a very useful
source of information on the incredible number of devices that’s out there. They
also have a web site with all of their articles and other useful information at
www.ednmag.com

Electronic Engineering Times, is a newspaper-like weekly trade journal which
covers all EE topics including embedded systems.

Embedded Systems Programming, published monthly, covers the software aspects
of embedded systems. This magazine leans to the high end and embedded x86
PC software market, and is dominated by the high-level language computer
science types.

Electronic Design, a monthly EE oriented magazine is similar to EDN but with
less coverage of embedded topics.

INDEX 229

8031 microcontroller, 125–126

8051 microcontroller:

address modes, 52–55

architecture, 28–30

bit addressable memory, 37–38

control unit, 33

data memory, 35–36

direct and register addressing, 43–46

generic address modes, 51–52

hardware, 32–41

immediate addressing, 5051

indirect addressing, 46–50

input/output ports, 38

instruction register, 33

instruction set, 42–43

internal data memory, 34–35

internal program memory, 33–34

memory organization, 30–32

oscillator and timing circuitry, 41–42

program counter, 33

register banks, 38

reset circuitry, 39–41

serial input/output, 38

timer/counter, 38

A
address bus, 25

address decoder, 121, 153–155

address map, 122–124

address space, 120

analog to digital converter (ADC), 180

anti-fuses, 148

application specific integrated circuit

(ASIC):

defined, 145

field programmable gate array

(FPGA), 146

full custom, 145

gate arrays, 146

standard cell, 145

arbitration, 177

architectures:

Harvard, 4–5, 24

microcontroller, 4–6, 24

von Neumann, 4, 24

B
bank switching, 118

benchmarks, 207

bit addressable memory, 37–38

block parity, 112

burst mode, 177

bus:

address, 25

bandwidth, 119

control, 25

data, 24–25

multiplexed, 20–21

C
cache memory, 114

central processing unit (CPU):

address bus, 118

address map, 122–124

address spaces, 120

bank switching, 118

control bus, 119

data bus, 119

read and write operations, 117–118

checksum, 112

clock frequency, 62–63

confidence checks, 111–112

construction methods, 197–198

control bus, 25

counters, 179

critical code segments, 187–188

cyclic redundancy code (CRC), 113

D
Darlington transistor, 167

data bus, 25–25

design considerations:

battery powered systems, 205

230 EMBEDDED CONTROLLER
Hardware Design

device selection, 207–208

thermal analysis, 204

timing analysis, 127–133

development tools:
hardware, 201–202
programmable logic device

(PLD), 155–157
software, 203

device selection criteria, 207–208

digital to analog converter (DAC), 180

diodes, 9

direct access memory, 99–100

direct CPU input/output

interfacing, 161–162
direct memory access (DMA):

burst mode, 177

cycle stealing, 177

defined, 176

electromagnetic compatibility (EMC), 199

electrostatic discharge (ESD), 199–200

erasable programmable read-only memory

(EPROM), 102–103
error detection and correction:

block parity, 112

checksum, 112–113

confidence checks, 111

cyclic redundancy code (CRC), 113

defined, 111

error sources, 111

Hamming code, 112

hard errors, 111

horizontal parity, 112

soft errors, 111

vertical parity, 112

event-driven subroutine calls, 184–185
external data memory cycles:

memory read, 134–136

memory write, 136–138

F
fan-out and loading analysis, 63–70
fault tolerance, 200–201
flash erasable programmable read-only

memory (EPROM), 103

fuse-link programmable logic device

(PLD), 147

fuse map, 147

G
ground bounce, 72–75

ground plane, 198

ground problems, 198

H
Hamming code, 112

hard errors, 111

hardware development tools, 201–202

Harvard architecture, 4–5

horizontal parity, 112

I

input/output:

direct CPU interfacing, 161–162

direct memory access (DMA), 176–178

level conversion, 180

matrix display devices, 171–173

matrix keyboard input, 170–171

output current limitations, 166–170

parallel ports, 178

program-controlled I/O bus interfacing,

173–175

power relays, 181

port for the 8051 family, 162–166

serial ports, 179

universal asynchronous receiver-

transmitter (UART), 179

instruction decoder, 33

interfacing, TTL to CMOS, 78–82

interrupt cycles, 184

interrupt driven program elements, 186

interrupt service routine (ISR), 185

interrupts:

cycles, 184

edge triggered, 190

event-driven subroutine call, 184–185

hardware, 183, 184–185

keyboard, 185

level triggered, 190

maskable, 189

non-maskable, 190

non-vectored, 193–194

parallel interrupt prioritization, 194–195

processing options, 189–190

program elements, 186

serial interrupt prioritization, 194

231 INDEX

software, 183, 184

vectored, 192–193

J
Joint Electronic Device Engineering

Committee (JEDEC) standard, 105–106

L
level conversion, 180

level triggered interrupts, 190

logic families:

CMOS, 77–78

NMOS, 77

Schottky, 77

TTL, 75–77

logic symbols, 17–19

M
maskable interrupts, 189

matrix display devices, 172–173

matrix keyboard, 170–171

memory:

asynchronous, 110

bit addressable, 37–38

cache, 114

direct access, 99–100

dynamic random access (DRAM), 100

electrically erasable programmable

read-only, 103

erasable programmable read-only

(EPROM), 102–103

flash erasable programmable read-only

(EPROM), 103

mask read-only, 101

non-volatile random access (NVRAM),

104–105

organization considerations, 107–108

primary, 96–97

programmable (PROM), 101–102

random access (RAM), 98

read-only, 101–104

read/write, 100–101

secondary, 96–97

sequential access, 98

static random access (SRAM), 100

synchronous, 110

timing considerations, 109–110

virtual, 114–115
volatility, 98

memory-mapped input/output, 121

memory organization, 107–108

memory read, 26

memory write, 26

multiplexed bus, 20–21

N
noise margin analysis, 82–90

non-maskable interrupts, 190

non-vectored interrupts, 193–194

non-volatile random access memory

(NVRAM), 104–105

O
Ohm’s law, 8

P
parallel interrupt prioritization,194–195

parallel ports, 178

partial address coding, 123

power, 8

power plane, 198

power relays, 181

primary memory, 96–97

printed circuit board (PCB), 197

prioritization schemes, 189, 194–195

processor performance metrics, 206

program-controlled I/O bus interfacing,

173–175
programmable array logic (PAL), 146, 151–

153

programmable logic array (PLA), 146, 151

programmable logic devices (PLDs):

anti-fuses, 148

architectures, 148–150

assembler, 155

compiler, 155

defined, 146

designing using personal computers,

157–158

development tools, 155–157

fuse-link, 147

input/output decoding using, 157

programmable read-only memory

(PROM) as, 150

232 EMBEDDED CONTROLLER
Hardware Design

sum-of-products logic, 147
test vectors, 156

switches:
mechanical, 10

Verilog, 156
VHDL, 156

transistor, 11–17

programmable read-only memory
(PROM), 101–102

programmable read-only memory
(PROM) programmer, 106–107

propagation delays, 59–60
pulse width, 62

R

T
test instruments, 202–203
test vectors, 156–157
thermal analysis, 204
timers, 179
timing analysis:

preliminary, 127–133
worst case, 90–92

random access memory (RAM):
defined, 98

timing diagrams:
defined, 19–20

dynamic (DRAM), 100
non-volatile (NVRAM), 104–105
static (SRAM), 100

read-only memory (ROM):
defined, 101

notation conventions, 58–59
transistors:

CMOS, 14–15
Darlington, 167
FET, 12–13

erasable programmable (EPROM),
102–103

mask, 101

NMOS, 13
operation, 9–10
switches, 11–17

programmable (PROM), 101–102
read and write operations, 117–118
real-time processing, 175
re-entrant code, ‘86

transmission line effects, 70–72
tri-state bus interfacing, 61–62
tri-state logic, 18–19

reset circuitry, 39–41
resistance, 7–9
rise and fall times, 59

U
universal asynchronous receiver-transmitter

(UART), 179

S V
secondary memory, 96–97
semaphores, 188–189
sequential access memory, 99
serial interrupt prioritization, 194
serial ports, 179
setup and hold times, 60–61
single cycle direct memory access

(DMA), 177
soft errors, 111
software development cycle, 55
software development tools, 55–56, 203
special function register (SFR), 31
static random access memory

(SRAM), 100
sum-of-products logic, 147

vectored interrupts, 192–193
Verilog, 156
vertical parity, 112
VHDL, 156
virtual memory, 114–115
voltage, 7
von Neumann architecture, 4

W
wiring capacitance, 66–68
worst-case design, 57
worst-case timing analysis, 90–92

Z
zero-insertion force (ZIF) socket, 107

INDEX233Embedded Technology™ Series

Programming

Microcontrollers in C,

Second Edition

“cookbooks”
contains valuable aids for embedded designers.

CIRCUIT REFERENCES
Our list of circuit references and design

by Ted Van Sickle
INCLUDES WINDOWS 95/98 CD-ROM.

Completely updated new edition of a classic

for embedded systems designers and program­

mers. It covers C basics, advanced C topics,

microcontroller basics and usage, and gives

example code, using the Motorola family of

microcontrollers, including RISC machines.

The CD-ROM contains the code from the

book, a full set of Motorola’s microcontroller

documentation in PDF format, and a fully

searchable electronic version of the text.

1-878707-57-4 $59.95

Embedded Controller

Hardware Design

by Ken Arnold

INCLUDES WINDOWS CD-ROM. This

practical tutorial introduces the reader to

the design of embedded microprocessor-

and microcontroller-based systems. General

topics covered in the book include device

architecture, interfacing, timing, memory,

I/O, as well as design and development

techniques. The book presents the latest

application-oriented information concerning

this rapidly changing area of technology.

1-878707-52-3 $49.95

Controlling the World

with Your PC

by Paul Bergsman
INCLUDES PC DISK. A wealth of circuits and

programs that you can use to control the real

world. Connect to the parallel printer port of

your PC and monitor fluid levels, control

stepper motors, turn appliances on and off,

and much more. The accompanying disk for

PCs contains all the software files in ready-to-

use form. All schematics have been fully tested.

Great for embedded systems engineers,

as well as students and scientists.

1-878707-15-9 $35.00

The Forrest Mims
Engineers Notebook
by Forrest Mims III
Revised edition of a classic by world’s best-selling
electronics author. Hundreds of useful circuits built
from ICs and other parts.

1-878707-03-5 $19.95

The Forrest Mims Circuit
Scrapbook, Volumes I and II
by Forrest Mims III
More “greatest hits” circuit designs from Forrest
Mims. Volume I contains digital PLLs, interval
timers, light wave communicators, and much
more. Volume II contains comparators, data
loggers, laser diode devices, fiber optic sensors,
power supplies, and much more.

Vol. I: 1-878707-48-5 $19.95
Vol. II: 1-878707-49-3 $24.95

The Integrated Circuit
Hobbyist’s Handbook
by Thomas R. Powers
This comprehensive “cookbook” of circuit
applications is conveniently cross-indexed by
device and application. Contains amplifiers,
filters, bus transceivers and bus buffers for digital
interfacing, counters, comparators, FSK modu­
lators and decoders, oscillators, and much more.

1-878707-12-4 $19.95

Simple, Low-Cost
Electronics Projects
by Fred Blechman
Contains a wealth of fully tested electronics
design projects using commonly available parts,
each with circuit theory, parts lists, and design
and testing guidelines.

1-878707-46-9 $19.95

Visit our web site for more great
 technical books on all subjects!

www.LLH-Publishing.com

	1 Review of Electronics Fundamentals
	Objectives
	Embedded Microcomputer Applications
	Microcomputer and Microcontroller Architectures
	Digital Hardware Concepts
	Voltage, Current, and Resistance
	Diodes
	Transistors
	Mechanical Switches
	Transistor Switch ON
	Transistor Switch OFF
	The FET as a Logic Switch
	NMOS Logic
	CMOS Logic
	Mixed MOS
	Real Transistors DonÌt Eat Q!

	Logic Symbols
	Tri-State Logic

	Timing Diagrams
	Multiplexed Bus
	Loading and Noise Margin Analysis
	The Design and Development Process
	Chapter One Problems

	2 Microcontroller Concepts
	Organization: von Neumann vs. Harvard
	Microprocessor/Microcontroller Basics
	Microcontroller CPU, Memory, and I/O
	Design Methodology

	The 8051 Family Microcontroller Processor Architecture
	Introduction to the 8051 Architecture
	Memory Organization
	CPU Hardware
	Oscillator and Timing Circuitry

	The 8051 Microcontroller Instruction Set Summary
	Direct and Register Addressing
	Indirect Addressing
	Immediate Addressing
	Generic Address Modes and Instruction Formats
	Address Modes
	The Software Development Cycle
	Software Development Tools

	Chapter Two Problems

	3 Worst- Case Timing, Loading, Analysis, and Design
	Timing Diagram Notation Conventions
	Rise and Fall Times
	Propagation Delays
	Setup and Hold Time
	Tri-State Bus Interfacing
	Pulse Width and Clock Frequency

	Fan-Out and Loading Analysis—DC and AC
	Calculating Wiring Capacitance
	Fan-Out When CMOS Drives LSTTL
	Transmission Line Effects
	Ground Bounce

	Logic Family IC Characteristics and Interfacing
	Interfacing TTL Compatible Signals to 5 Volt CMOS
	Design Example: Noise Margin Analysis Spreadsheet
	Worst-Case Timing Analysis Example

	Chapter Three Review Problems

	4 Memory Technologies and Interfacing
	Memory Taxonomy
	Secondary Memory
	Volatility
	Random Access Memory
	Sequential Access Memory
	Direct Access Memory

	Read/Write Memories
	Read-Only Memory
	Other Memory Types
	JEDEC Memory Pin-Outs
	Device Programmers
	Memory Organization Considerations
	Parametric Considerations
	Asynchronous vs. Synchronous Memory
	Error Detection and Correction
	Error Sources
	Confidence Checks

	Memory Management
	Cache Memory
	Virtual Memory
	CPU Control Lines for Memory Interfacing

	Chapter Four Problems
	Read and Write Operations

	5 CPU Bus Interface and Timing
	Address, Data, and Control Buses
	Address Spaces and Decoding
	Address Map
	Chapter Five Problems
	The Central Processing Unit (CPU)

	6 A Detailed Design Example
	External Data Memory Cycles
	External Memory Data Memory Read
	External Data Memory Write

	Design Problem 1
	Design Problem 2
	Design Problem 3
	Completing the Analysis

	Chapter Six Problems

	Memory Selection and Interfacing
	Preliminary Timing Analysis
	7 Programmable Logic Devices
	Introduction to Programmable Logic
	Technologies: Fuse-Link, EPROM, EEPROM, and RAM Storage
	PROM as PLD
	Programmable Logic Arrays
	PAL-Style PLDs

	Design Examples
	PLD Development Tools

	Simple I/O Decoding and Interfacing Using PLDs
	IC Design Using PCs
	Chapter Seven Problems
	Direct CPU I/O Interfacing

	8 Basic I/ O Interfaces
	Port I/O for the 8051 Family
	Output Current Limitations
	Simple Input/Output Devices
	Matrix Keyboard Input
	Matrix Display Devices

	Program-Controlled I/O Bus Interfacing
	Real-Time Processing

	Direct Memory Access (DMA)
	Burst vs. Single Cycle DMA
	Cycle Stealing

	Elementary I/O Devices and Applications
	Timing and Level Conversion Considerations
	Level Conversion
	Power Relays

	Chapter Eight Problems

	9 Other Interfaces and Bus Cycles
	Interrupt Cycles
	Software Interrupts
	Hardware Interrupts
	Interrupt Driven Program Elements
	Critical Code Segments
	Semaphores
	Interrupt Processing Options
	Level and Edge Triggered Interrupts
	Vectored Interrupts
	Non-Vectored Interrupts
	Serial Interrupt Prioritization
	Parallel Interrupt Prioritization

	Construction Methods

	10 Other Useful Stuff
	Electromagnetic Compatibility
	Electrostatic Discharge Effects
	Fault Tolerance
	Software Development Tools
	Other Specialized Design Considerations
	Thermal Analysis and Design
	Battery Powered System Design Considerations

	Processor Performance Metrics
	Device Selection Process

	Power and Ground Planes
	Ground Problems
	11 Other Interfaces
	Analog Signal Conversion
	Special Proprietary Synchronous Serial Interfaces
	Unconventional Use of DRAM for Low Cost Data Storage
	Digital Signal Processing / Digital Audio Recording
	Detailed Checklist

	A Hardware Design Checklist
	Define Power Supply Requirements
	Verify Voltage Level Compatibility
	Check DC Fan-Out: Output Current Drive vs. Loading
	AC (Capacitive) Output Drive vs. Capacitive Load and De- rating
	Verify Worst Case Timing Conditions
	Determine if Transmission Line Termination is Required
	Clock Distribution
	Power and Ground Distribution
	Asynchronous Inputs
	Guarantee Power-On Reset State
	Programmable Logic Devices
	Deactivate Interrupt and Other Requests on Power-Up
	Electromagnetic Compatibility Issues
	Manufacturing and Test Issues
	Books

	B References, Web Links, and Other Sources
	Web and FTP Sites
	Periodicals: Subscription
	Periodicals: Advertiser Supported Trade Magazines
	Programming Microcontrollers in C, Second Edition
	Embedded Controller Hardware Design
	Controlling the World with Your PC
	The Forrest Mims Engineers Notebook
	The Forrest Mims Circuit Scrapbook, Volumes I and II
	The Integrated Circuit Hobbyist’s Handbook
	Simple, Low-Cost Electronics Projects

